|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| {{URWTC}} | | {{URWTC}} |
| {{Infobox MOS|Equalized=1|Collapsed=1|Pattern=LLLs}} | | {{Infobox MOS|Equalized=1|Collapsed=1|Pattern=LLLs}} |
| | {{MOS intro}} The so-called "Super Ultra Hyper Mega Meta Lydian" is one mode of this mos. |
|
| |
|
| '''3L1s<3/2>''' is constructed by repeating the fifth-spanning pattern LLLs of the ordinary diatonic mos ([[5L 2s]]) at the equave of 3/2. The so-called "Super Ultra Hyper Mega Meta Lydian" is one mode of this mos.
| | The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). The generator range is 171.4 to 240{{c}}, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3{{c}}). |
| | |
| The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents). | |
| | | |
| In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. | | In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. |
|
| |
|
| '''Angel''' is a proposed name for this mos. [[Basic]] Angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]]. | | '''Angel''' is a proposed name for this mos. [[Basic]] Angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]]. |
|
| |
| ==Notation==
| |
| | | |
| There are 4 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate angel scales as repeating at the double, triple or quadruple sesquitave (major ninth, thirteenth or seventeenth i. e. ~pentave), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s], a major thirteenth which is the Dorian mode of Bijou[9L 3s] or an ~pentave which is the Mixolydian mode of Hextone[12L 4s]. Since there are exactly 8 naturals in double sesquitave notation, 12 in triple sesquitave notation and 16 in quadruple sesquitave notation, letters A-H (FGABHCDEF) or dozenal or hex digits (0123456789XE0 or D1234567FGACD with flats written C molle or 0123456789ABCDEF0 or G123456789ABCDEFG with flats written F molle) may be used. | | == Notation == |
|
| | There are 4 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that {{dash|1, 5/4, 5/3}} is fifth-equivalent to a tone cluster of {{dash|1, 10/9, 5/4}}, it may be more convenient to notate angel scales as repeating at the double, triple or quadruple sesquitave (major ninth, thirteenth or seventeenth i. e. ~pentave), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s], a major thirteenth which is the Dorian mode of Bijou[9L 3s] or an ~pentave which is the Mixolydian mode of Hextone[12L 4s]. Since there are exactly 8 naturals in double sesquitave notation, 12 in triple sesquitave notation and 16 in quadruple sesquitave notation, letters A–H (FGABHCDEF) or dozenal or hex digits (0123456789XE0 or D1234567FGACD with flats written C molle or 0123456789ABCDEF0 or G123456789ABCDEFG with flats written F molle) may be used. |
| | |
| {| class="wikitable" | | {| class="wikitable" |
|
| | |+ style="font-size: 105%;" | Cents<ref name=":0">Fractions repeating more than 4 digits written as continued fractions</ref> |
| |+ | |
|
| |
| Cents<ref name=":0">Fractions repeating more than 4 digits written as continued fractions</ref> | |
|
| |
| ! colspan="4" |Notation
| |
|
| |
| !Supersoft
| |
|
| |
| !Soft
| |
|
| |
| !Semisoft
| |
|
| |
| !Basic
| |
|
| |
| !Semihard
| |
|
| |
| !Hard
| |
|
| |
| !Superhard
| |
|
| |
| |- | | |- |
|
| | ! colspan="4" | Notation |
| !Diatonic | | ! Supersoft |
|
| | ! Soft |
| !Napoli | | ! Semisoft |
|
| | ! Basic |
| !Bijou | | ! Semihard |
| !Hextone | | ! Hard |
| !~15edf | | ! Superhard |
|
| | |- |
| !~11edf | | ! Diatonic |
|
| | ! Napoli |
| !~18edf | | ! Bijou |
|
| | ! Hextone |
| !~7edf | | ! ~15edf |
|
| | ! ~11edf |
| !~17edf | | ! ~18edf |
|
| | ! ~7edf |
| !~10edf | | ! ~17edf |
|
| | ! ~10edf |
| !~13edf | | ! ~13edf |
|
| | |- |
| |- | | | Do#, Sol# |
|
| | | F# |
| |Do#, Sol# | | | 0#, D# |
|
| | | 0#, G# |
| |F# | | | 1\1546; 6.5 |
|
| | | 1\1163: 6.{{Overline|3}} |
| |0#, D# | | | 2\1877; 2, 2.6 |
| |0#, G# | | | rowspan="2" | 1\7 100 |
| |1\15 | | | 3\17124; 7.25 |
| 46; 6.5
| | | 2\10141; 5.{{Overline|6}} |
|
| | | 3\13 163.{{Overline|63}} |
| |1\11 | | |- |
| 63: 6.{{Overline|3}}
| | | Reb, Lab |
|
| | | Gb |
| |2\18 | | | 1b, 1c |
| 77; 2, 2.6
| | | 1f |
|
| | | 3\15138; 3.25 |
| | rowspan="2" |1\7 | | | 2\11126; 3.1{{Overline|6}} |
|
| | | 3\18116; 7.75 |
| 100 | | | 2\1782; 1.3{{Overline|18}} |
|
| | | 1\1070; 1.7 |
| |3\17 | | | 1\13 54.{{Overline|54}} |
| 124; 7.25
| | |- |
|
| | | '''Re, La''' |
| |2\10 | | | '''G''' |
| 141; 5.{{Overline|6}}
| | | '''1''' |
|
| | | '''1''' |
| |3\13 | | | '''4\15''''''184; 1.625''' |
|
| | | '''3\11''''''189; 2.{{Overline|1}}''' |
| 163.{{Overline|63}} | | | '''5\18''''''193; 1, 1, 4.{{Overline|6}}''' |
|
| | | '''2\7''' '''200''' |
| |- | | | '''5\17''''''206; 1, 8.{{Overline|6}}''' |
|
| | | '''3\10''''''211; 1, 3.25''' |
| |Reb, Lab | | | '''4\13''' '''218.{{Overline|18}}''' |
|
| | |- |
| |Gb | | | Re#, La# |
|
| | | G# |
| |1b, 1c | | | 1# |
| |1f | | | 1# |
| |3\15 | | | 5\15230; 1.3 |
| 138; 3.25
| | | 4\11252; 1.58{{Overline|3}} |
|
| | | 7\18270; 1.0{{Overline|3}} |
| |2\11 | | | rowspan="2" | 3\7 300 |
| 126; 3.1{{Overline|6}}
| | | 8\17331; 29 |
|
| | | 5\10352; 1.0625 |
| |3\18 | | | 7\13 381.{{Overline|81}} |
| 116; 7.75
| | |- |
|
| | | Mib, Sib |
| |2\17 | | | Ab |
| 82; 1.3{{Overline|18}}
| | | 2b, 2c |
|
| | | 2f |
| |1\10 | | | 7\15323; 13 |
| 70; 1.7
| | | 5\11315; 1.2{{Overline|6}} |
|
| | | 8\18309; 1, 2.1 |
| |1\13 | | | 7\17289; 1, 1.9 |
|
| | | 4\10282; 2.8{{Overline|3}} |
| 54.{{Overline|54}} | | | 5\13 272.{{Overline|72}} |
|
| | |- |
| |- | | | Mi, Si |
|
| | | A |
| |'''Re, La''' | | | 2 |
|
| | | 2 |
| |'''G''' | | | 8\15369; 4.{{Overline|3}} |
|
| | | 6\11378; 1.0{{Overline|5}} |
| |'''1''' | | | 10\18387; 10.{{Overline|3}} |
| |'''1''' | | | 4\7 400 |
|
| | | 10\17413; 1, 3.8{{Overline|3}} |
| |'''4\15''' | | | 6\10423; 1.{{Overline|8}} |
| '''184; 1.625''' | | | 8\13 436.{{Overline|36}} |
|
| | |- |
| |'''3\11''' | | | Mi#, Si# |
| '''189; 2.{{Overline|1}}''' | | | A# |
|
| | | 2# |
| |'''5\18''' | | | 2# |
| '''193; 1, 1, 4.{{Overline|6}}''' | | | 9\15415; 2.6 |
|
| | | rowspan="2" | 7\11442; 9.5 |
| |'''2\7''' | | | 12\18464; 1.0625 |
|
| | | 5\7 500 |
| '''200''' | | | 13\17537; 14.5 |
|
| | | 8\10564; 1.41{{Overline|6}} |
| |'''5\17''' | | | 11\13 600 |
| '''206; 1, 8.{{Overline|6}}''' | | |- |
|
| | | Fab, Dob |
| |'''3\10''' | | | Bbb |
| '''211; 1, 3.25''' | | | 3b, 3c |
|
| | | 3f |
| |'''4\13''' | | | 10\15461; 1, 1.1{{Overline|6}} |
|
| | | 11\18425; 1.24 |
| '''218.{{Overline|18}}''' | | | 4\7 400 |
|
| | | 9\17372; 2.41{{Overline|6}} |
| |- | | | 5\10352; 1.0625 |
|
| | | 6\13 327.{{Overline|27}} |
| |Re#, La# | | |- |
|
| | | '''Fa, Do''' |
| |G# | | | '''Bb''' |
|
| | | '''3''' |
| |1# | | | '''3''' |
| |1# | | | '''11\15''''''507; 1.{{Overline|4}}''' |
| |5\15 | | | '''8\11''''''505; 3.8''' |
| 230; 1.3
| | | '''13\18''''''503; 4, 2.{{Overline|3}}''' |
|
| | | '''5\7''' '''500''' |
| |4\11 | | | '''12\17''''''496; 1.8125''' |
| 252; 1.58{{Overline|3}}
| | | '''7\10''''''494; 8.5''' |
|
| | | '''9\13''' '''490.{{Overline|90}}''' |
| |7\18 | | |- |
| 270; 1.0{{Overline|3}}
| | | Fa#, Do# |
|
| | | B |
| | rowspan="2" |3\7 | | | 3# |
|
| | | 3# |
| 300 | | | 12\15553; 1.{{Overline|18}} |
|
| | | 9\11568; 2.375 |
| |8\17 | | | 15\18580; 1.55 |
| 331; 29
| | | 6\7 600 |
|
| | | 15\17620; 1.45 |
| |5\10 | | | 9\10635; 3.4 |
| 352; 1.0625
| | | 12\13 654.{{Overline|54}} |
|
| | |- |
| |7\13 | | | Fax, Dox |
|
| | | B# |
| 381.{{Overline|81}} | | | 3x |
|
| | | 3x |
| |- | | | 13\15 600 |
|
| | | rowspan="2" | 10\11 631; 1.{{Overline|72}} |
| |Mib, Sib | | | 17\18 658; 15.5 |
|
| | | 7\7 700 |
| |Ab | | | 18\17 744; 1.208{{Overline|3}} |
|
| | | 11\10 776; 2.125 |
| |2b, 2c | | | 15\13 818.{{Overline|18}} |
| |2f | | |- |
| |7\15 | | | Dob, Solb |
| 323; 13
| | | Hb |
|
| | | 4b, 4c |
| |5\11 | | | 4f |
| 315; 1.2{{Overline|6}}
| | | 14\15 646; 6.5 |
|
| | | 16\18 619; 2.{{Overline|81}} |
| |8\18 | | | 6\7 600 |
| 309; 1, 2.1
| | | 14\17 579; 3.{{Overline|2}} |
|
| | | 8\10564; 1.41{{Overline|6}} |
| |7\17 | | | 10\13 545.{{Overline|45}} |
| 289; 1, 1.9
| | |- |
|
| | ! Do, Sol |
| |4\10 | | ! H |
| 282; 2.8{{Overline|3}}
| | ! 4 |
|
| | ! 4 |
| |5\13 | | ! '''15\15''' '''692; 3.25''' |
|
| | ! '''11\11''' '''694; 1, 2.8''' |
| 272.{{Overline|72}} | | ! '''18\18''' '''696; 1.291'''{{Overline|6}} |
|
| | ! '''7\7''' '''700''' |
| |- | | ! '''17\17''' '''703; 2, 2.1'''{{Overline|6}} |
|
| | ! '''10\10''' '''705; 1.1'''{{Overline|3}} |
| |Mi, Si | | ! '''13\13''' '''709.'''{{Overline|09}} |
|
| | |- |
| |A | | | Do#, Sol# |
|
| | | Η# |
| |2 | | | 4# |
| |2 | | | 4# |
| |8\15 | | | 16\15 738; 2.1{{Overline|6}} |
| 369; 4.{{Overline|3}}
| | | 12\11 757; 1, 8.5 |
|
| | | 20\18 774; 5, 6 |
| |6\11 | | | rowspan="2" | 8\8 800 |
| 378; 1.0{{Overline|5}}
| | | 20\17 827; 1, 1.41{{Overline|6}} |
|
| | | 12\10 847; 17 |
| |10\18 | | | 16\13 872.{{Overline|72}} |
| 387; 10.{{Overline|3}}
| | |- |
|
| | | Reb, Lab |
| |4\7 | | | Cb |
|
| | | 5b, 5c |
| 400
| | | 5 |
|
| | | 18\15 830; 1.3 |
| |10\17 | | | 13\11 821; 19 |
| 413; 1, 3.8{{Overline|3}}
| | | 21\18 812; 1, 9.{{Overline|3}} |
|
| | | 19\17 786; 4.8{{Overline|3}} |
| |6\10 | | | 11\10 776; 2.125 |
| 423; 1.{{Overline|8}}
| | | 14\13 763.{{Overline|63}} |
|
| | |- |
| |8\13 | | | '''Re, La''' |
|
| | | '''C''' |
| 436.{{Overline|36}} | | | '''5''' |
|
| | | '''5''' |
| |- | | | '''19\15''' '''876; 1.08{{Overline|3}}''' |
|
| | | '''14\11''' '''884; 4.75''' |
| |Mi#, Si# | | | '''23\18''' '''890; 3.1''' |
|
| | | '''9\5''' '''900''' |
| |A# | | | '''22\17''' '''910; 2.9''' |
|
| | | '''13\10''' '''917; 1.{{Overline|54}}''' |
| |2# | | | '''17\13''' '''927.{{Overline|27}}''' |
| |2# | | |- |
| |9\15 | | | Re#, La# |
| 415; 2.6
| | | C# |
|
| | | 5# |
| | rowspan="2" |7\11 | |
| 442; 9.5
| |
|
| |
| |12\18 | |
| 464; 1.0625
| |
|
| |
| |5\7 | |
|
| |
| 500 | |
|
| |
| |13\17 | |
| 537; 14.5
| |
|
| |
| |8\10 | |
| 564; 1.41{{Overline|6}}
| |
|
| |
| |11\13 | |
|
| |
| 600 | |
|
| |
| |- | |
|
| |
| |Fab, Dob | |
|
| |
| |Bbb | |
|
| |
| |3b, 3c | |
| |3f | |
| |10\15 | |
| 461; 1, 1.1{{Overline|6}}
| |
|
| |
| |11\18 | |
| 425; 1.24
| |
|
| |
| |4\7 | |
|
| |
| 400 | |
|
| |
| |9\17 | |
| 372; 2.41{{Overline|6}}
| |
|
| |
| |5\10 | |
| 352; 1.0625
| |
|
| |
| |6\13 | |
|
| |
| 327.{{Overline|27}} | |
|
| |
| |- | |
|
| |
| |'''Fa, Do''' | |
|
| |
| |'''Bb''' | |
|
| |
| |'''3''' | |
| |'''3''' | |
|
| |
| |'''11\15''' | |
| '''507; 1.{{Overline|4}}''' | |
|
| |
| |'''8\11''' | |
| '''505; 3.8''' | |
|
| |
| |'''13\18''' | |
| '''503; 4, 2.{{Overline|3}}''' | |
|
| |
| |'''5\7''' | |
|
| |
| '''500''' | |
|
| |
| |'''12\17''' | |
| '''496; 1.8125''' | |
|
| |
| |'''7\10''' | |
| '''494; 8.5''' | |
|
| |
| |'''9\13''' | |
|
| |
| '''490.{{Overline|90}}''' | |
|
| |
| |- | |
|
| |
| |Fa#, Do# | |
|
| |
| |B | |
|
| |
| |3# | |
| |3# | |
| |12\15 | |
| 553; 1.{{Overline|18}}
| |
|
| |
| |9\11 | |
| 568; 2.375
| |
|
| |
| |15\18 | |
| 580; 1.55
| |
|
| |
| |6\7 | |
|
| |
| 600 | |
|
| |
| |15\17 | |
| 620; 1.45
| |
|
| |
| |9\10 | |
| 635; 3.4
| |
|
| |
| |12\13 | |
|
| |
| 654.{{Overline|54}} | |
|
| |
| |- | |
|
| |
| |Fax, Dox | |
|
| |
| |B# | |
|
| |
| |3x | |
| |3x | |
| |13\15 | |
|
| |
| 600 | |
|
| |
| | rowspan="2" |10\11 | |
|
| |
| 631; 1.{{Overline|72}} | |
|
| |
| |17\18 | |
|
| |
| 658; 15.5 | |
|
| |
| |7\7 | |
|
| |
| 700 | |
|
| |
| |18\17 | |
|
| |
| 744; 1.208{{Overline|3}} | |
|
| |
| |11\10 | |
|
| |
| 776; 2.125 | |
|
| |
| |15\13 | |
|
| |
| 818.{{Overline|18}}
| |
|
| |
| |- | |
|
| |
| |Dob, Solb | |
| |Hb | |
| | 4b, 4c | |
| |4f | |
| |14\15 | |
|
| |
| 646; 6.5 | |
| |16\18 | |
|
| |
| 619; 2.{{Overline|81}} | |
| |6\7 | |
|
| |
| 600 | |
| |14\17 | |
|
| |
| 579; 3.{{Overline|2}} | |
| |8\10 | |
| 564; 1.41{{Overline|6}}
| |
| |10\13 | |
|
| |
| 545.{{Overline|45}} | |
|
| |
| |- | |
|
| |
| !Do, Sol | |
|
| |
| !H | |
|
| |
| !4 | |
| !4 | |
| !'''15\15''' | |
|
| |
| '''692; 3.25''' | |
|
| |
| !'''11\11''' | |
|
| |
| '''694; 1, 2.8''' | |
|
| |
| !'''18\18''' | |
|
| |
| '''696; 1.291'''{{Overline|6}} | |
|
| |
| !'''7\7''' | |
|
| |
| '''700''' | |
|
| |
| !'''17\17''' | |
|
| |
| '''703; 2, 2.1'''{{Overline|6}} | |
|
| |
| !'''10\10''' | |
|
| |
| '''705; 1.1'''{{Overline|3}} | |
|
| |
| !'''13\13''' | |
|
| |
| '''709.'''{{Overline|09}} | |
|
| |
| |- | |
|
| |
| |Do#, Sol# | |
|
| |
| |Η# | |
|
| |
| |4# | |
| |4# | |
| |16\15 | |
|
| |
| 738; 2.1{{Overline|6}} | |
|
| |
| |12\11 | |
|
| |
| 757; 1, 8.5 | |
|
| |
| | 20\18 | |
|
| |
| 774; 5, 6 | |
|
| |
| | rowspan="2" | 8\8 | |
|
| |
| 800 | |
|
| |
| |20\17 | |
|
| |
| 827; 1, 1.41{{Overline|6}} | |
|
| |
| |12\10 | |
|
| |
| 847; 17 | |
|
| |
| | 16\13 | |
|
| |
| 872.{{Overline|72}}
| |
|
| |
| |- | |
|
| |
| |Reb, Lab | |
|
| |
| |Cb | |
|
| |
| |5b, 5c | |
| |5 | |
| |18\15 | |
|
| |
| 830; 1.3 | |
|
| |
| |13\11 | |
|
| |
| 821; 19 | |
|
| |
| | 21\18 | |
|
| |
| 812; 1, 9.{{Overline|3}} | |
|
| |
| | 19\17 | |
|
| |
| 786; 4.8{{Overline|3}} | |
|
| |
| | 11\10 | |
|
| |
| 776; 2.125 | |
|
| |
| | 14\13 | |
|
| |
| 763.{{Overline|63}} | |
|
| |
| |- | |
|
| |
| |'''Re, La''' | |
|
| |
| |'''C''' | |
|
| |
| |'''5''' | |
| |'''5''' | |
|
| |
| |'''19\15''' | |
|
| |
| '''876; 1.08{{Overline|3}}''' | |
|
| |
| |'''14\11''' | |
|
| |
| '''884; 4.75''' | |
|
| |
| |'''23\18''' | |
|
| |
| '''890; 3.1''' | |
|
| |
| |'''9\5''' | |
|
| |
| '''900''' | |
|
| |
| |'''22\17''' | |
|
| |
| '''910; 2.9''' | |
|
| |
| |'''13\10''' | |
|
| |
| '''917; 1.{{Overline|54}}''' | |
|
| |
| |'''17\13''' | |
|
| |
| '''927.{{Overline|27}}''' | |
|
| |
| |- | |
|
| |
| | Re#, La# | |
|
| |
| |C# | |
|
| |
| | 5# | | | 5# |
| |5# | | | 20\15 923: 13 |
| |20\15 | | | 15\11 947; 2, 1.4 |
|
| | | 25\18 967; 1, 2.875 |
| 923: 13
| | | rowspan="2" | 10\7 1000 |
|
| | | 25\17 1034; 2, 14 |
| |15\11 | | | 15\10 1058; 1, 4.{{Overline|6}} |
|
| | | 20\13 1090.{{Overline|90}} |
| 947; 2, 1.4
| | |- |
|
| | | Mib, Sib |
| |25\18 | | | Db |
|
| | | 6b, 6c |
| 967; 1, 2.875
| | | 6f |
|
| | | 22\15 1015; 2.6 |
| | rowspan="2" |10\7 | | | 16\11 1010; 1.9 |
|
| | | 26\18 1006; 2, 4.{{Overline|6}} |
| 1000
| | | 24\17 993; 9.{{Overline|6}} |
|
| | | 14\10 988; 4.25 |
| |25\17 | | | 18\13 981.{{Overline|81}} |
|
| | |- |
| 1034; 2, 14
| | | Mi, Si |
|
| | | D |
| | 15\10 | | | 6 |
|
| | | 6 |
| 1058; 1, 4.{{Overline|6}}
| | | 23\15 1061; 1, 1.1{{Overline|6}} |
|
| | | 17\11 1073; 1, 2.1{{Overline|6}} |
| |20\13 | | | 28\18 1083; 1.{{Overline|148}} |
|
| | | 11\7 1100 |
| 1090.{{Overline|90}}
| | | 27\17 1117; 4, 7 |
|
| | | 16\10 1129; 2, 2.{{Overline|3}} |
| | | 21\9 1145.{{Overline|45}} |
| | |- |
| | | Mi#, Si# |
| | | D# |
| | | 6# |
| | | 6# |
| | | 24\15 1107; 1.{{Overline|4}} |
| | | rowspan="2" | 18\11 1136; 1.1875 |
| | | 30\18 1161; 3.{{Overline|4}} |
| | | 12\7 1200 |
| | | 30\17 1241; 2.{{Overline|63}} |
| | | 18\10 1270; 1.7 |
| | | 24\13 1309.{{Overline|09}} |
| | |- |
| | | Fab, Dob |
| | | Ebb |
| | | 7b, 7c |
| | | 7f |
| | | 25\15 1153; 1.{{Overline|18}} |
| | | 29\18 1121; 1, 1, 2.6 |
| | | 11\7 1100 |
| | | 26\17 1075; 1.16 |
| | | 15\10 1058; 1, 4.{{Overline|6}} |
| | | 19\13 1036.{{Overline|36}} |
| | |- |
| | | '''Fa, Do''' |
| | | '''Eb''' |
| | | '''7''' |
| | | '''7''' |
| | | '''26\15''' '''1200''' |
| | | '''19\11''' '''1200''' |
| | | '''31\18''' '''1200''' |
| | | '''12\7''' '''1200''' |
| | | '''29\17''' '''1200''' |
| | | '''17\10''' '''1200''' |
| | | '''22\13''' '''1200''' |
| | |- |
| | | Fa#, Do# |
| | | E |
| | | 7# |
| | | 7# |
| | | 27\15 1246; 6.5 |
| | | 20\11 1263; 6.{{Overline|3}} |
| | | 33\18 1277; 2, 2.6 |
| | | 13\7 1300 |
| | | 32\17 1324; 7.25 |
| | | 19\10 1341; 5.{{Overline|6}} |
| | | 25\13 1363.{{Overline|63}} |
| | |- |
| | | Fax, Dox |
| | | E# |
| | | 7x |
| | | 7x |
| | | 28\15 1292; 3.25 |
| | | rowspan="2" | 21\11 1326; 3.1{{Overline|6}} |
| | | 35\18 1354; 1, 5.2 |
| | | 14\7 1400 |
| | | 35\17 1448; 3.625 |
| | | 21\10 1482; 2.8{{Overline|3}} |
| | | 28\13 1527.{{Overline|27}} |
| | |- |
| | | Dob, Solb |
| | | Fb |
| | | 8b, Fc |
| | | 8f |
| | | 29\15 1338; 2.1{{Overline|6}} |
| | | 34\18 1316; 7.75 |
| | | 13\7 1300 |
| | | 31\17 1282; 1.3{{Overline|18}} |
| | | 18\10 1270; 1.7 |
| | | 23\13 1254.{{Overline|54}} |
| | |- |
| | ! Do, Sol |
| | ! F |
| | ! 8, F |
| | ! 8 |
| | ! 30\15 1384; 1.625 |
| | ! 22\11 1389; 2.{{Overline|1}} |
| | ! 36\18 1393; 1, 1, 4.{{Overline|6}} |
| | ! 14\7 1400 |
| | ! 34\17 1406; 1, 8.{{Overline|6}} |
| | ! 20\10 1411; 1, 3.25 |
| | ! 26\13 1418.{{Overline|18}} |
| | |- |
| | | Do#, Sol# |
| | | F# |
| | | 8#, F# |
| | | 8# |
| | | 31\15 1430; 1.3 |
| | | 23\11 1452; 1.58{{Overline|3}} |
| | | 38\18 1470; 1.0{{Overline|3}} |
| | | rowspan="2" | 15\7 1500 |
| | | 37\17 1531; 29 |
| | | 22\10 1552; 1.0625 |
| | | 29\13 1581.{{Overline|81}} |
| | |- |
| | | Reb, Lab |
| | | Gb |
| | | 9b, Gc |
| | | 9f |
| | | 33\15 1523; 13 |
| | | 24\11 1515; 1.2{{Overline|6}} |
| | | 39\18 1509; 1, 2.1 |
| | | 36\17 1489; 1, 1.9 |
| | | 21\10 1482; 2.8{{Overline|3}} |
| | | 27\13 1472.{{Overline|72}} |
| | |- |
| | | '''Re, La''' |
| | | '''G''' |
| | | '''9, G''' |
| | | 9 |
| | | '''34\15''' '''1569; 4.{{Overline|3}}''' |
| | | '''25\11''' '''1578; 1.0{{Overline|5}}''' |
| | | '''41\18''' '''1587; 10.{{Overline|3}}''' |
| | | '''16\7''' '''1600''' |
| | | '''39\17''' '''1613; 1, 3.8{{Overline|3}}''' |
| | | '''23\10''' '''1623; 1.{{Overline|8}}''' |
| | | '''30\13''' '''1636.{{Overline|36}}''' |
| | |- |
| | | Re#, La# |
| | | G# |
| | | 9#, G# |
| | | 9# |
| | | 35\15 1615; 2.6 |
| | | 26\11 1642; 9.5 |
| | | 43\18 1664; 1.0625 |
| | | rowspan="2" | 17\7 1700 |
| | | 42\17 1737; 14.5 |
| | | 25\10 1764; 1.41{{Overline|6}} |
| | | 33\13 1800 |
| | |- |
| | | Mib, Sib |
| | | Ab |
| | | Xb, Ac |
| | | Af |
| | | 37\15 1707; 1.{{Overline|4}} |
| | | 27\11 1705; 3.8 |
| | | 44\18 1703; 4, 2.{{Overline|3}} |
| | | 41\17 1696; 1.8125 |
| | | 24\10 1694; 8.5 |
| | | 31\13 1690.{{Overline|90}} |
| | |- |
| | | Mi, Si |
| | | A |
| | | X, A |
| | | A |
| | | 38\15 1753; 1.{{Overline|18}} |
| | | 28\11 1768; 2.375 |
| | | 46\18 1780; 1.55 |
| | | 18\7 1800 |
| | | 44\17 1820; 1.45 |
| | | 26\10 1835; 3.4 |
| | | 34\13 1854.{{Overline|54}} |
| | |- |
| | | Mi#, Si# |
| | | A# |
| | | X#, A# |
| | | A# |
| | | 39\15 1800 |
| | | rowspan="2" | 29\11 1831; 1.{{Overline|72}} |
| | | 48\18 1858; 15.5 |
| | | 19\7 1900 |
| | | 47\17 1944; 1.208{{Overline|3}} |
| | | 28\10 1976; 2.125 |
| | | 37\13 2018.{{Overline|18}} |
| | |- |
| | | Fab, Dob |
| | | Bbb |
| | | Ebb, Ccc |
| | | Bf |
| | | 40\15 1846; 6.5 |
| | | 47\18 1819; 2.{{Overline|81}} |
| | | 18\7 1800 |
| | | 43\17 1779; 3.{{Overline|2}} |
| | | 25\10 1764; 1.41{{Overline|6}} |
| | | 32\13 1745.{{Overline|45}} |
| | |- |
| | | '''Fa, Do''' |
| | | '''Bb''' |
| | | '''Eb, Cc''' |
| | | '''B''' |
| | | '''41\15''' '''1892; 3.25''' |
| | | '''30\11''' '''1894; 1, 2.8''' |
| | | '''49\18''' '''1896; 1.291{{Overline|6}}''' |
| | | '''19\7''' '''1900''' |
| | | '''46\17''' '''1903; 2.1{{Overline|6}}''' |
| | | '''27\10''' '''1905; 1.1{{Overline|3}}''' |
| | | '''35\13''' '''1909.{{Overline|09}}''' |
| | |- |
| | | Fa#, Do# |
| | | B |
| | | E, C |
| | | B# |
| | | 42\15 1938; 2.1{{Overline|6}} |
| | | 31\11 1957; 1, 8.5 |
| | | 51\18 1974; 5.1{{Overline|6}} |
| | | 20\7 2000 |
| | | 49\17 2027; 1, 1.41{{Overline|6}} |
| | | 29\10 2047; 17 |
| | | 38\13 2072.{{Overline|72}} |
| | |- |
| | | Fax, Dox |
| | | B# |
| | | Ex, Cx |
| | | Bx |
| | | 43\15 1984; 1.625 |
| | | rowspan="2" | 32\11 2021; 19 |
| | | 53\18 2051; 1, 1, 1, 1.4 |
| | | 21\7 2100 |
| | | 52\17 2151; 2.625 |
| | | 31\10 2188; 4.25 |
| | | 41\13 2236.{{Overline|36}} |
| | |- |
| | | Dob, Solb |
| | | Hb |
| | | 0b, Dc |
| | | Cf |
| | | 44\15 2030; 1.3 |
| | | 52\18 2012; 1, 9,{{Overline|3}} |
| | | 20\7 2000 |
| | | 48\17 1986; 4.8{{Overline|3}} |
| | | 28\10 1976; 2.125 |
| | | 36\13 1963.{{Overline|63}} |
| | |- |
| | ! Do, Sol |
| | ! H |
| | ! 0, D |
| | ! C |
| | ! 45\15 2076; 1.08'''{{Overline|3}}''' |
| | ! 33\11 2084; 4.75 |
| | ! 54\18 2090; 3.1 |
| | ! 21\7 2100 |
| | ! 51\17 2110; 2.9 |
| | ! 30\10 2117; 1.{{Overline|54}} |
| | ! 39\13 2127.{{Overline|27}} |
| |- | | |- |
|
| | | Do#, Sol# |
| |Mib, Sib | | | Η# |
|
| | | 0#, D# |
| |Db | | | C# |
|
| | | 46\152123; 13 |
| |6b, 6c | | | 34\112147; 2, 1.4 |
| |6f | | | 56\182167; 1, 2.875 |
| |22\15 | | | rowspan="2" | 22\72200 |
|
| | | 54\172234; 2, 14 |
| 1015; 2.6
| | | 32\102258; 1, 4.{{Overline|6}} |
|
| | | 42\132090.{{Overline|90}} |
| |16\11 | |
|
| |
| 1010; 1.9
| |
|
| |
| | 26\18
| |
|
| |
| 1006; 2, 4.{{Overline|6}}
| |
|
| |
| |24\17
| |
|
| |
| 993; 9.{{Overline|6}}
| |
|
| |
| |14\10
| |
|
| |
| 988; 4.25
| |
|
| |
| |18\13 | |
|
| |
| 981.{{Overline|81}}
| |
|
| |
| |-
| |
|
| |
| |Mi, Si
| |
|
| |
| |D
| |
|
| |
| |6
| |
| |6
| |
| |23\15
| |
|
| |
| 1061; 1, 1.1{{Overline|6}}
| |
|
| |
| |17\11
| |
|
| |
| 1073; 1, 2.1{{Overline|6}}
| |
|
| |
| | 28\18
| |
|
| |
| 1083; 1.{{Overline|148}}
| |
|
| |
| |11\7
| |
|
| |
| 1100
| |
|
| |
| | 27\17
| |
|
| |
| 1117; 4, 7
| |
|
| |
| | 16\10
| |
|
| |
| 1129; 2, 2.{{Overline|3}}
| |
|
| |
| | 21\9
| |
|
| |
| 1145.{{Overline|45}}
| |
|
| |
| |-
| |
|
| |
| |Mi#, Si#
| |
|
| |
| | D#
| |
|
| |
| |6#
| |
| |6#
| |
| | 24\15
| |
|
| |
| 1107; 1.{{Overline|4}}
| |
|
| |
| | rowspan="2" | 18\11 | |
|
| |
| 1136; 1.1875
| |
|
| |
| |30\18 | |
|
| |
| 1161; 3.{{Overline|4}}
| |
|
| |
| | 12\7
| |
|
| |
| 1200
| |
|
| |
| |30\17
| |
|
| |
| 1241; 2.{{Overline|63}}
| |
|
| |
| |18\10
| |
|
| |
| 1270; 1.7
| |
|
| |
| |24\13
| |
|
| |
| 1309.{{Overline|09}}
| |
|
| |
| |-
| |
|
| |
| |Fab, Dob
| |
|
| |
| |Ebb | |
|
| |
| |7b, 7c
| |
| |7f
| |
| |25\15
| |
|
| |
| 1153; 1.{{Overline|18}}
| |
|
| |
| |29\18
| |
|
| |
| 1121; 1, 1, 2.6
| |
|
| |
| | 11\7
| |
|
| |
| 1100
| |
|
| |
| |26\17
| |
|
| |
| 1075; 1.16
| |
|
| |
| |15\10
| |
|
| |
| 1058; 1, 4.{{Overline|6}}
| |
|
| |
| |19\13 | |
|
| |
| 1036.{{Overline|36}}
| |
|
| |
| |-
| |
|
| |
| |'''Fa, Do'''
| |
|
| |
| |'''Eb'''
| |
|
| |
| |'''7'''
| |
| |'''7'''
| |
|
| |
| |'''26\15'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''19\11'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''31\18'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''12\7'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''29\17'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''17\10'''
| |
|
| |
| '''1200'''
| |
|
| |
| |'''22\13'''
| |
|
| |
| '''1200'''
| |
|
| |
| |-
| |
|
| |
| |Fa#, Do#
| |
|
| |
| | E
| |
|
| |
| |7#
| |
| |7#
| |
| |27\15
| |
|
| |
| 1246; 6.5
| |
|
| |
| |20\11
| |
|
| |
| 1263; 6.{{Overline|3}}
| |
|
| |
| | 33\18
| |
|
| |
| 1277; 2, 2.6
| |
|
| |
| |13\7
| |
|
| |
| 1300
| |
|
| |
| |32\17
| |
|
| |
| 1324; 7.25
| |
|
| |
| |19\10
| |
|
| |
| 1341; 5.{{Overline|6}}
| |
|
| |
| |25\13
| |
|
| |
| 1363.{{Overline|63}}
| |
|
| |
| |-
| |
|
| |
| |Fax, Dox
| |
|
| |
| |E#
| |
|
| |
| |7x
| |
| |7x
| |
| |28\15
| |
|
| |
| 1292; 3.25
| |
|
| |
| | rowspan="2" |21\11
| |
|
| |
| 1326; 3.1{{Overline|6}}
| |
|
| |
| |35\18
| |
|
| |
| 1354; 1, 5.2
| |
|
| |
| | 14\7
| |
|
| |
| 1400
| |
|
| |
| |35\17
| |
|
| |
| 1448; 3.625
| |
|
| |
| |21\10
| |
|
| |
| 1482; 2.8{{Overline|3}}
| |
|
| |
| |28\13
| |
|
| |
| 1527.{{Overline|27}}
| |
|
| |
| |- | | |- |
|
| |
| |Dob, Solb
| |
|
| |
| |Fb
| |
|
| |
| |8b, Fc
| |
| |8f
| |
| |29\15
| |
|
| |
| 1338; 2.1{{Overline|6}}
| |
|
| |
| |34\18
| |
|
| |
| 1316; 7.75
| |
|
| |
| |13\7
| |
|
| |
| 1300
| |
|
| |
| |31\17
| |
|
| |
| 1282; 1.3{{Overline|18}}
| |
|
| |
| |18\10
| |
|
| |
| 1270; 1.7
| |
|
| |
| | 23\13
| |
|
| |
| 1254.{{Overline|54}}
| |
|
| |
| |-
| |
|
| |
| !Do, Sol
| |
|
| |
| !F
| |
|
| |
| ! 8, F
| |
| !8
| |
| ! 30\15
| |
|
| |
| 1384; 1.625
| |
|
| |
| ! 22\11
| |
|
| |
| 1389; 2.{{Overline|1}}
| |
|
| |
| !36\18
| |
|
| |
| 1393; 1, 1, 4.{{Overline|6}}
| |
|
| |
| !14\7
| |
|
| |
| 1400
| |
|
| |
| ! 34\17
| |
|
| |
| 1406; 1, 8.{{Overline|6}}
| |
|
| |
| ! 20\10
| |
|
| |
| 1411; 1, 3.25
| |
|
| |
| !26\13
| |
|
| |
| 1418.{{Overline|18}}
| |
|
| |
| |-
| |
|
| |
| |Do#, Sol#
| |
|
| |
| |F#
| |
|
| |
| |8#, F#
| |
| |8#
| |
| |31\15
| |
|
| |
| 1430; 1.3
| |
|
| |
| | 23\11
| |
|
| |
| 1452; 1.58{{Overline|3}}
| |
|
| |
| |38\18
| |
|
| |
| 1470; 1.0{{Overline|3}}
| |
|
| |
| | rowspan="2" |15\7
| |
|
| |
| 1500
| |
|
| |
| | 37\17
| |
|
| |
| 1531; 29
| |
|
| |
| | 22\10
| |
|
| |
| 1552; 1.0625
| |
|
| |
| |29\13
| |
|
| |
| 1581.{{Overline|81}}
| |
|
| |
| |-
| |
|
| |
| | Reb, Lab | | | Reb, Lab |
|
| | | Cb |
| |Gb | | | 1b, 1c |
|
| | | Df |
| |9b, Gc | | | 48\152215; 2.6 |
| |9f | | | 35\112210; 1.9 |
| |33\15 | | | 57\182206; 2, 4.{{Overline|6}} |
|
| | | 53\172193; 9.{{Overline|6}} |
| 1523; 13
| | | 31\10 2188; 4.25 |
|
| | | 40\132181.{{Overline|81}} |
| |24\11 | |
|
| |
| 1515; 1.2{{Overline|6}}
| |
|
| |
| | 39\18
| |
|
| |
| 1509; 1, 2.1
| |
|
| |
| |36\17 | |
|
| |
| 1489; 1, 1.9
| |
|
| |
| |21\10
| |
|
| |
| 1482; 2.8{{Overline|3}}
| |
|
| |
| |27\13 | |
|
| |
| 1472.{{Overline|72}}
| |
|
| |
| |- | | |- |
|
| | | '''Re, La''' |
| |'''Re, La''' | | | '''C''' |
|
| | | '''1''' |
| |'''G''' | | | '''D''' |
|
| | | '''49\15''''''2261; 1, 1.1{{Overline|6}}''' |
| |'''9, G''' | | | '''36\11''''''2273; 1, 2.1{{Overline|6}}''' |
| |9 | | | '''59\18''''''2283; 1.{{Overline|148}}''' |
| |'''34\15''' | | | '''23\7''''''2300''' |
|
| | | '''56\17''''''2317; 4, 7''' |
| '''1569; 4.{{Overline|3}}''' | | | '''33\10''''''2329; 2, 2.{{Overline|3}}''' |
|
| | | '''43\13''''''2245.{{Overline|45}}''' |
| |'''25\11''' | |
|
| |
| '''1578; 1.0{{Overline|5}}''' | |
|
| |
| |'''41\18''' | |
|
| |
| '''1587; 10.{{Overline|3}}''' | |
|
| |
| |'''16\7''' | |
|
| |
| '''1600''' | |
|
| |
| |'''39\17''' | |
|
| |
| '''1613; 1, 3.8{{Overline|3}}''' | |
|
| |
| |'''23\10''' | |
|
| |
| '''1623; 1.{{Overline|8}}''' | |
|
| |
| |'''30\13''' | |
|
| |
| '''1636.{{Overline|36}}''' | |
|
| |
| |- | | |- |
|
| | | Re#, La# |
| |Re#, La#
| | | C# |
|
| | | 1# |
| |G#
| | | D# |
|
| | | 50\152307; 1.{{Overline|4}} |
| |9#, G#
| | | 37\112336; 1.1875 |
| |9#
| | | 61\182361; 3.{{Overline|4}} |
| |35\15
| | | rowspan="2" | 24\72400 |
|
| | | 59\172441; 2.{{Overline|63}} |
| 1615; 2.6
| | | 35\102470; 1.7 |
|
| | | 46\132509.{{Overline|09}} |
| |26\11
| |
|
| |
| 1642; 9.5
| |
|
| |
| | 43\18
| |
|
| |
| 1664; 1.0625
| |
|
| |
| | rowspan="2" | 17\7
| |
|
| |
| 1700
| |
|
| |
| |42\17
| |
|
| |
| 1737; 14.5
| |
|
| |
| |25\10
| |
|
| |
| 1764; 1.41{{Overline|6}}
| |
|
| |
| |33\13
| |
|
| |
| 1800
| |
|
| |
| |-
| |
|
| |
| |Mib, Sib
| |
|
| |
| |Ab
| |
|
| |
| |Xb, Ac
| |
| |Af
| |
| |37\15
| |
|
| |
| 1707; 1.{{Overline|4}}
| |
|
| |
| |27\11
| |
|
| |
| 1705; 3.8
| |
|
| |
| |44\18
| |
|
| |
| 1703; 4, 2.{{Overline|3}}
| |
|
| |
| |41\17
| |
|
| |
| 1696; 1.8125
| |
|
| |
| |24\10
| |
|
| |
| 1694; 8.5
| |
|
| |
| |31\13
| |
|
| |
| 1690.{{Overline|90}}
| |
|
| |
| |-
| |
|
| |
| |Mi, Si
| |
|
| |
| |A
| |
|
| |
| |X, A
| |
| |A
| |
| |38\15
| |
|
| |
| 1753; 1.{{Overline|18}}
| |
|
| |
| |28\11
| |
|
| |
| 1768; 2.375
| |
|
| |
| |46\18
| |
|
| |
| 1780; 1.55
| |
|
| |
| |18\7
| |
|
| |
| 1800
| |
|
| |
| |44\17
| |
|
| |
| 1820; 1.45
| |
|
| |
| |26\10
| |
|
| |
| 1835; 3.4
| |
|
| |
| |34\13
| |
|
| |
| 1854.{{Overline|54}}
| |
|
| |
| |-
| |
|
| |
| |Mi#, Si#
| |
|
| |
| | A#
| |
|
| |
| |X#, A#
| |
| |A#
| |
| |39\15
| |
|
| |
| 1800
| |
|
| |
| | rowspan="2" |29\11
| |
|
| |
| 1831; 1.{{Overline|72}}
| |
|
| |
| |48\18
| |
|
| |
| 1858; 15.5
| |
|
| |
| |19\7
| |
|
| |
| 1900
| |
|
| |
| |47\17
| |
|
| |
| 1944; 1.208{{Overline|3}}
| |
|
| |
| |28\10
| |
|
| |
| 1976; 2.125
| |
|
| |
| | 37\13
| |
|
| |
| 2018.{{Overline|18}}
| |
|
| |
| |-
| |
|
| |
| |Fab, Dob
| |
|
| |
| |Bbb
| |
|
| |
| |Ebb, Ccc
| |
| |Bf
| |
| |40\15
| |
|
| |
| 1846; 6.5
| |
|
| |
| |47\18
| |
|
| |
| 1819; 2.{{Overline|81}}
| |
|
| |
| | 18\7
| |
|
| |
| 1800
| |
|
| |
| |43\17
| |
|
| |
| 1779; 3.{{Overline|2}}
| |
|
| |
| |25\10
| |
|
| |
| 1764; 1.41{{Overline|6}}
| |
|
| |
| | 32\13
| |
|
| |
| 1745.{{Overline|45}}
| |
|
| |
| |-
| |
|
| |
| |'''Fa, Do'''
| |
|
| |
| |'''Bb'''
| |
|
| |
| |'''Eb, Cc'''
| |
| |'''B'''
| |
| |'''41\15'''
| |
|
| |
| '''1892; 3.25'''
| |
|
| |
| |'''30\11'''
| |
|
| |
| '''1894; 1, 2.8'''
| |
|
| |
| |'''49\18'''
| |
|
| |
| '''1896; 1.291{{Overline|6}}'''
| |
|
| |
| |'''19\7'''
| |
|
| |
| '''1900'''
| |
|
| |
| |'''46\17'''
| |
|
| |
| '''1903; 2.1{{Overline|6}}'''
| |
|
| |
| |'''27\10'''
| |
|
| |
| '''1905; 1.1{{Overline|3}}'''
| |
|
| |
| |'''35\13'''
| |
|
| |
| '''1909.{{Overline|09}}'''
| |
|
| |
| |-
| |
|
| |
| |Fa#, Do#
| |
|
| |
| | B
| |
|
| |
| |E, C
| |
| |B#
| |
| |42\15
| |
|
| |
| 1938; 2.1{{Overline|6}}
| |
|
| |
| |31\11
| |
|
| |
| 1957; 1, 8.5
| |
|
| |
| | 51\18
| |
|
| |
| 1974; 5.1{{Overline|6}}
| |
|
| |
| |20\7
| |
|
| |
| 2000
| |
|
| |
| |49\17
| |
|
| |
| 2027; 1, 1.41{{Overline|6}}
| |
|
| |
| |29\10
| |
|
| |
| 2047; 17
| |
|
| |
| |38\13
| |
|
| |
| 2072.{{Overline|72}}
| |
|
| |
| |-
| |
|
| |
| |Fax, Dox
| |
|
| |
| |B#
| |
|
| |
| |Ex, Cx
| |
| |Bx
| |
| |43\15
| |
|
| |
| 1984; 1.625
| |
|
| |
| | rowspan="2" |32\11
| |
|
| |
| 2021; 19
| |
|
| |
| |53\18
| |
|
| |
| 2051; 1, 1, 1, 1.4
| |
|
| |
| |21\7
| |
|
| |
| 2100
| |
|
| |
| |52\17
| |
|
| |
| 2151; 2.625
| |
|
| |
| |31\10
| |
|
| |
| 2188; 4.25
| |
|
| |
| |41\13
| |
|
| |
| 2236.{{Overline|36}}
| |
|
| |
| |-
| |
|
| |
| |Dob, Solb
| |
|
| |
| |Hb
| |
|
| |
| |0b, Dc
| |
| |Cf
| |
| |44\15
| |
|
| |
| 2030; 1.3
| |
|
| |
| |52\18
| |
|
| |
| 2012; 1, 9,{{Overline|3}}
| |
|
| |
| |20\7
| |
|
| |
| 2000
| |
|
| |
| |48\17
| |
|
| |
| 1986; 4.8{{Overline|3}}
| |
|
| |
| |28\10
| |
|
| |
| 1976; 2.125
| |
|
| |
| |36\13
| |
|
| |
| 1963.{{Overline|63}}
| |
|
| |
| |-
| |
|
| |
| !Do, Sol
| |
|
| |
| !H
| |
|
| |
| !0, D
| |
| !C
| |
| !45\15
| |
|
| |
| 2076; 1.08'''{{Overline|3}}'''
| |
|
| |
| !33\11
| |
|
| |
| 2084; 4.75
| |
|
| |
| !54\18
| |
|
| |
| 2090; 3.1
| |
|
| |
| !21\7
| |
|
| |
| 2100
| |
|
| |
| !51\17
| |
|
| |
| 2110; 2.9
| |
|
| |
| !30\10
| |
|
| |
| 2117; 1.{{Overline|54}}
| |
|
| |
| !39\13
| |
|
| |
| 2127.{{Overline|27}}
| |
| |-
| |
| |Do#, Sol#
| |
| |Η#
| |
| |0#, D#
| |
| |C#
| |
| |46\15
| |
| 2123; 13
| |
| |34\11
| |
| 2147; 2, 1.4
| |
| |56\18
| |
| 2167; 1, 2.875
| |
| | rowspan="2" |22\7
| |
| 2200
| |
| |54\17
| |
| 2234; 2, 14
| |
| |32\10
| |
| 2258; 1, 4.{{Overline|6}}
| |
| |42\13
| |
| 2090.{{Overline|90}}
| |
| |-
| |
| |Reb, Lab
| |
| |Cb
| |
| |1b, 1c
| |
| |Df
| |
| |48\15
| |
| 2215; 2.6
| |
| |35\11
| |
| 2210; 1.9
| |
| |57\18
| |
| 2206; 2, 4.{{Overline|6}}
| |
| |53\17
| |
| 2193; 9.{{Overline|6}}
| |
| |31\10
| |
|
| |
| 2188; 4.25
| |
| |40\13
| |
| 2181.{{Overline|81}}
| |
| |-
| |
| |'''Re, La'''
| |
| |'''C'''
| |
| |'''1'''
| |
| |'''D'''
| |
| |'''49\15'''
| |
| '''2261; 1, 1.1{{Overline|6}}'''
| |
| |'''36\11'''
| |
| '''2273; 1, 2.1{{Overline|6}}'''
| |
| |'''59\18'''
| |
| '''2283; 1.{{Overline|148}}'''
| |
| |'''23\7'''
| |
| '''2300'''
| |
| |'''56\17'''
| |
| '''2317; 4, 7'''
| |
| |'''33\10'''
| |
| '''2329; 2, 2.{{Overline|3}}'''
| |
| |'''43\13'''
| |
| '''2245.{{Overline|45}}'''
| |
| |-
| |
| |Re#, La# | |
| |C# | |
| |1# | |
| |D# | |
| |50\15 | |
| 2307; 1.{{Overline|4}}
| |
| |37\11 | |
| 2336; 1.1875
| |
| |61\18 | |
| 2361; 3.{{Overline|4}}
| |
| | rowspan="2" |24\7 | |
| 2400
| |
| |59\17 | |
| 2441; 2.{{Overline|63}}
| |
| |35\10 | |
| 2470; 1.7
| |
| |46\13 | |
| 2509.{{Overline|09}}
| |
| |-
| |
| |Mib, Sib
| |
| |Db
| |
| |2b, 2c
| |
| |Ef
| |
| |52\15
| |
| 2400
| |
| |38\11
| |
| 2400
| |
| |62\18
| |
| 2400
| |
| |58\17
| |
| 2400
| |
| |34\10
| |
| 2400
| |
| |44\13
| |
| 2400
| |
| |-
| |
| |Mi, Si
| |
| |D
| |
| |2
| |
| |E
| |
| |53\15
| |
| 2446; 6.5
| |
| |39\11
| |
| 2463; 6.{{Overline|3}}
| |
| |64\18
| |
| 2477; 2, 2.6
| |
| |25\7
| |
| 2500
| |
| |61\17
| |
| 2524; 7.25
| |
| |36\10
| |
| 2541; 5.{{Overline|6}}
| |
| |47\13
| |
| 2563.{{Overline|63}}
| |
| |-
| |
| |Mi#, Si#
| |
| |D#
| |
| |2#
| |
| |E#
| |
| |54\15
| |
| 2492; 3.25
| |
| | rowspan="2" |40\11
| |
| 2526; 3.1
| |
| |66\18
| |
| 2554; 1, 5.2
| |
| |26\7
| |
| 2600
| |
| |64\17
| |
| 2648; 2.625
| |
| |38\10
| |
| 2682; 2.8{{Overline|3}}
| |
| |50\13
| |
| 2727.{{Overline|27}}
| |
| |-
| |
| |Fab, Dob
| |
| |Ebb
| |
| |3b, 3c
| |
| |Fff
| |
| |55\15
| |
| 2538; 2.1{{Overline|6}}
| |
| |65\18
| |
| 2516; 7.75
| |
| |25\7
| |
| 2500
| |
| |60\17
| |
| 2482; 1.3{{Overline|18}}
| |
| |35\10
| |
| 2470; 1.7
| |
| |45\13
| |
| 2454.{{Overline|54}}
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Eb'''
| |
| |'''3'''
| |
| |'''Ff'''
| |
| |'''56\15'''
| |
| '''2584; 1.625'''
| |
| |'''41\11'''
| |
| '''2589; 2.{{Overline|1}}'''
| |
| |'''67\18'''
| |
| '''2593; 1, 1, 4.{{Overline|6}}'''
| |
| |'''26\7'''
| |
| '''2600'''
| |
| |'''63\17'''
| |
| '''2606; 1, 8.{{Overline|6}}'''
| |
| |'''37\10'''
| |
| '''2611; 1, 3.25'''
| |
| |'''48\13'''
| |
| '''2618.{{Overline|18}}'''
| |
| |-
| |
| |Fa#, Do#
| |
| |E
| |
| |3#
| |
| |F
| |
| |57\15
| |
| 2630; 1.3
| |
| |42\11
| |
| 2652; 1.58{{Overline|3}}
| |
| |69\18
| |
| 2670; 1.0{{Overline|3}}
| |
| |27\7
| |
| 2700
| |
| |66\17
| |
| 2731; 29
| |
| |39\10
| |
| 2752; 1.0625
| |
| |51\13
| |
| 2781.{{Overline|81}}
| |
| |-
| |
| |Fax, Dox
| |
| |E#
| |
| |3x
| |
| |F#
| |
| |58\15
| |
| 2676; 1.08{{Overline|3}}
| |
| | rowspan="2" |43\11
| |
| 2715; 1.2{{Overline|6}}
| |
| |71\18
| |
| 2748; 2.58{{Overline|3}}
| |
| |28\7
| |
| 2800
| |
| |69\17
| |
| 2855; 4.8
| |
| |41\10
| |
| 2894; 8.5
| |
| |54\13
| |
| 2945.{{Overline|45}}
| |
| |-
| |
| |Dob, Solb
| |
| |Fb
| |
| |4b, 4c
| |
| |0f, Gf
| |
| |59\15
| |
| 2723; 13
| |
| |70\18
| |
| 2709; 1, 2.1
| |
| |27\7
| |
| 2700
| |
| |65\17
| |
| 2689; 1, 1.9
| |
| |38\10
| |
| 2682; 2.8{{Overline|3}}
| |
| |49\13
| |
| 2672.{{Overline|72}}
| |
| |-
| |
| !Do, Sol
| |
| !F
| |
| !4
| |
| !0, G
| |
| !60\15
| |
| 2769; 4.'''{{Overline|3}}'''
| |
| !44\11
| |
| 2778; 1.0{{Overline|5}}
| |
| !72\18
| |
| 2787; 3.1
| |
| !28\7
| |
| 2800
| |
| !68\17
| |
| 2813; 1, 3.8{{Overline|3}}
| |
| !40\10
| |
| 2823; 1.{{Overline|8}}
| |
| !52\13
| |
| 2836.{{Overline|36}}
| |
| |}
| |
|
| |
| {| class="wikitable"
| |
| |+Relative cents<ref name=":02">Fractions repeating more than 4 digits written as continued fractions</ref>
| |
| ! colspan="4" | Notation
| |
| !Supersoft
| |
| !Soft
| |
| !Semisoft
| |
| !Basic
| |
| !Semihard
| |
| !Hard
| |
| !Superhard
| |
| |-
| |
| ! Diatonic
| |
| !Napoli
| |
| ! Bijou
| |
| !Hextone
| |
| !~15edf
| |
| !~11edf
| |
| !~18edf
| |
| !~7edf
| |
| !~17edf
| |
| !~10edf
| |
| !~13edf
| |
| |-
| |
| |Do#, Sol#
| |
| |F#
| |
| |0#, D#
| |
| |0#, G#
| |
| |1\15
| |
|
| |
| ''46.{{Overline|6}}''
| |
| |1\11
| |
|
| |
| ''63.{{Overline|63}}''
| |
| |2\18
| |
|
| |
| ''77.7̄''
| |
| | rowspan="2" |1\7
| |
|
| |
| ''100''
| |
| | 3\17
| |
|
| |
| ''123; 1.{{Overline|8}}''
| |
| | 2\10
| |
|
| |
| ''140''
| |
| |3\13
| |
|
| |
| ''161; 1, 1.1{{Overline|6}}''
| |
| |-
| |
| |Reb, Lab
| |
| | Gb
| |
| |1b, 1c
| |
| |1f
| |
| |3\15
| |
|
| |
| ''140''
| |
| |2\11
| |
|
| |
| ''127.{{Overline|27}}''
| |
| |3\18
| |
|
| |
| ''116.{{Overline|6}}''
| |
| | 2\17
| |
|
| |
| ''82; 2.8{{Overline|3}}''
| |
| |1\10
| |
|
| |
| ''70''
| |
| |1\13
| |
|
| |
| ''53; 1.{{Overline|18}}''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''G'''
| |
| |'''1'''
| |
| |'''1'''
| |
| |'''4\15'''
| |
|
| |
| '''''186.{{Overline|6}}'''''
| |
| |'''3\11'''
| |
|
| |
| '''''190.{{Overline|90}}'''''
| |
| |'''5\18'''
| |
|
| |
| '''''194.{{Overline|4}}'''''
| |
| |'''2\7'''
| |
|
| |
| '''''200'''''
| |
| |'''5\17'''
| |
|
| |
| '''''205; 1.1{{Overline|3}}'''''
| |
| |'''3\10'''
| |
|
| |
| '''''210'''''
| |
| |'''4\13'''
| |
|
| |
| '''''215; 2.6'''''
| |
| |-
| |
| |Re#, La#
| |
| | G#
| |
| | 1#
| |
| |1#
| |
| |5\15
| |
|
| |
| ''233.{{Overline|3}}''
| |
| |4\11
| |
|
| |
| ''254.{{Overline|54}}''
| |
| |7\18
| |
|
| |
| ''272.2̄''
| |
| | rowspan="2" |3\7
| |
|
| |
| ''300''
| |
| |8\17
| |
|
| |
| ''329; 2, 2.{{Overline|3}}''
| |
| |5\10
| |
|
| |
| ''350''
| |
| |7\13
| |
|
| |
| ''376; 1.08{{Overline|3}}''
| |
| |- | | |- |
| |Mib, Sib | | | Mib, Sib |
| |Ab | | | Db |
| |2b, 2c | | | 2b, 2c |
| |2f | | | Ef |
| |7\15 | | | 52\152400 |
|
| | | 38\112400 |
| ''326.{{Overline|6}}''
| | | 62\182400 |
| |5\11 | | | 58\172400 |
|
| | | 34\102400 |
| ''318.{{Overline|18}}''
| | | 44\132400 |
| | 8\18 | |
|
| |
| ''311.{{Overline|1}}''
| |
| |7\17 | |
|
| |
| ''288; 4.25''
| |
| | 4\10 | |
|
| |
| ''280''
| |
| |5\13 | |
|
| |
| ''269; 4.{{Overline|3}}''
| |
| |- | | |- |
| |Mi, Si | | | Mi, Si |
| |A | | | D |
| | 2 | | | 2 |
| |2 | | | E |
| |8\15 | | | 53\152446; 6.5 |
|
| | | 39\112463; 6.{{Overline|3}} |
| ''373.{{Overline|3}}''
| | | 64\182477; 2, 2.6 |
| |6\11
| | | 25\72500 |
|
| | | 61\172524; 7.25 |
| ''381.{{Overline|81}}''
| | | 36\102541; 5.{{Overline|6}} |
| |10\18
| | | 47\132563.{{Overline|63}} |
|
| |
| ''388.{{Overline|8}}''
| |
| |4\7
| |
|
| |
| ''400''
| |
| |10\17
| |
|
| |
| ''411; 1, 3.25''
| |
| |6\10
| |
|
| |
| ''420''
| |
| |8\13
| |
|
| |
| ''430; 1.3''
| |
| |-
| |
| |Mi#, Si#
| |
| |A#
| |
| |2#
| |
| |2#
| |
| |9\15
| |
|
| |
| ''420''
| |
| | rowspan="2" |7\11
| |
|
| |
| ''445.{{Overline|45}}''
| |
| |12\18
| |
|
| |
| ''466.{{Overline|6}}''
| |
| |5\7
| |
|
| |
| ''500''
| |
| |13\17
| |
|
| |
| ''535; 3.4''
| |
| |8\10 | |
|
| |
| ''560''
| |
| |11\13
| |
|
| |
| ''592; 3.25''
| |
| |-
| |
| |Fab, Dob
| |
| |Bbb
| |
| |3b, 3c
| |
| |3f
| |
| |10\15
| |
|
| |
| ''466.{{Overline|6}}''
| |
| |11\18
| |
|
| |
| ''427.{{Overline|7}}''
| |
| |4\7
| |
|
| |
| ''400''
| |
| |9\17
| |
|
| |
| ''370; 1.7''
| |
| |5\10
| |
|
| |
| ''350''
| |
| |6\13
| |
|
| |
| ''323; 13''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Bb'''
| |
| |'''3'''
| |
| |'''3'''
| |
| |'''11\15'''
| |
|
| |
| '''''513.{{Overline|3}}'''''
| |
| |'''8\11'''
| |
|
| |
| '''''509.{{Overline|09}}'''''
| |
| |'''13\18'''
| |
|
| |
| '''''505.{{Overline|5}}'''''
| |
| |'''5\7''' | |
|
| |
| '''''500'''''
| |
| |'''12\17'''
| |
|
| |
| '''''494; 8.5'''''
| |
| |'''7\10'''
| |
|
| |
| '''''490'''''
| |
| |'''9\13'''
| |
|
| |
| '''''484; 1.625'''''
| |
| |-
| |
| |Fa#, Do#
| |
| | B
| |
| |3#
| |
| |3#
| |
| |12\15
| |
|
| |
| ''560''
| |
| |9\11
| |
|
| |
| ''572.{{Overline|72}}''
| |
| | 15\18
| |
|
| |
| ''583.{{Overline|3}}''
| |
| |6\7
| |
|
| |
| ''600''
| |
| |15\17
| |
|
| |
| ''617; 1.41{{Overline|6}}''
| |
| |9\10 | |
|
| |
| ''630''
| |
| |12\13 | |
|
| |
| ''646; 6.5''
| |
| |-
| |
| | Fax, Dox
| |
| |B#
| |
| |3x
| |
| |3x
| |
| |13\15
| |
|
| |
| ''606.{{Overline|6}}''
| |
| | rowspan="2" |10\11
| |
|
| |
| ''636.{{Overline|36}}''
| |
| |17\18
| |
|
| |
| ''661.{{Overline|1}}''
| |
| |7\7
| |
|
| |
| ''700''
| |
| |18\17
| |
|
| |
| ''741; 5.{{Overline|6}}''
| |
| |11\10 | |
|
| |
| ''770''
| |
| |15\13
| |
|
| |
| ''807; 1.{{Overline|4}}''
| |
| |-
| |
| |Dob, Solb
| |
| |Hb
| |
| |4b, 4c
| |
| |4f
| |
| |14\15
| |
|
| |
| ''653.{{Overline|3}}''
| |
| |16\18
| |
|
| |
| ''622.{{Overline|2}}''
| |
| |6\7
| |
|
| |
| ''600''
| |
| | 14\17
| |
|
| |
| ''576; 2.125''
| |
| | 8\10
| |
|
| |
| ''560''
| |
| |10\13
| |
|
| |
| ''538; 2.1{{Overline|6}}''
| |
| |-
| |
| !Do, Sol
| |
| !H
| |
| !4
| |
| !4
| |
| ! colspan="7" |''700''
| |
| |-
| |
| |Do#, Sol#
| |
| |Η#
| |
| |4#
| |
| |4#
| |
| |16\15
| |
|
| |
| ''746.{{Overline|6}}''
| |
| |12\11
| |
|
| |
| ''763.{{Overline|63}}''
| |
| |20\18
| |
|
| |
| ''777.{{Overline|7}}''
| |
| | rowspan="2" |8\7
| |
|
| |
| ''800''
| |
| |20\17
| |
|
| |
| ''823; 1.{{Overline|8}}''
| |
| |12\10
| |
|
| |
| ''840''
| |
| |16\13
| |
|
| |
| ''861; 1, 1.1{{Overline|6}}''
| |
| |-
| |
| |Reb, Lab
| |
| |Cb
| |
| |5b, 5c
| |
| |5
| |
| |18\15
| |
|
| |
| ''840''
| |
| |13\11
| |
|
| |
| ''827.{{Overline|27}}''
| |
| |21\18
| |
|
| |
| ''816.{{Overline|6}}''
| |
| | 19\17
| |
|
| |
| ''782; 2.8{{Overline|3}}''
| |
| |11\10
| |
|
| |
| ''770''
| |
| |14\13
| |
|
| |
| ''753; 1.{{Overline|18}}''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''C'''
| |
| |'''5'''
| |
| |'''5'''
| |
| |'''19\15'''
| |
|
| |
| '''''886.{{Overline|6}}'''''
| |
| |'''14\11'''
| |
|
| |
| '''''890.{{Overline|90}}'''''
| |
| |'''23\18'''
| |
|
| |
| '''''894.{{Overline|4}}'''''
| |
| |'''9\7'''
| |
|
| |
| '''''900'''''
| |
| |'''22\17'''
| |
|
| |
| '''''905; 1.1{{Overline|3}}'''''
| |
| |'''13\10'''
| |
|
| |
| '''''910'''''
| |
| |'''17\13'''
| |
|
| |
| '''''915; 2.6'''''
| |
| |-
| |
| | Re#, La#
| |
| |C#
| |
| |5#
| |
| |5#
| |
| |20\15
| |
|
| |
| ''933.{{Overline|3}}''
| |
| |15\11
| |
|
| |
| ''954.{{Overline|54}}''
| |
| |25\18
| |
|
| |
| ''972.{{Overline|2}}''
| |
| | rowspan="2" | 10\7
| |
|
| |
| ''1000''
| |
| |25\17
| |
|
| |
| ''1029; 2, 2.{{Overline|3}}''
| |
| |15\10
| |
|
| |
| ''1050''
| |
| |20\13
| |
|
| |
| ''1076; 1.08{{Overline|3}}''
| |
| |- | | |- |
| |Mib, Sib | | | Mi#, Si# |
| |Db | | | D# |
| |6b, 6c | | | 2# |
| |6f | | | E# |
| |22\15
| | | 54\152492; 3.25 |
|
| | | rowspan="2" | 40\112526; 3.1 |
| ''1026.{{Overline|6}}''
| | | 66\182554; 1, 5.2 |
| |16\11
| | | 26\72600 |
|
| | | 64\172648; 2.625 |
| ''1018.{{Overline|18}}''
| | | 38\102682; 2.8{{Overline|3}} |
| |26\18
| | | 50\132727.{{Overline|27}} |
|
| |
| ''1011.{{Overline|1}}''
| |
| |24\17
| |
|
| |
| ''988; 4.25''
| |
| |14\10 | |
|
| |
| ''980''
| |
| |18\13 | |
|
| |
| ''969; 4.{{Overline|3}}''
| |
| |-
| |
| |Mi, Si
| |
| |D
| |
| |6
| |
| |6
| |
| | 23\15
| |
|
| |
| ''1073.{{Overline|3}}''
| |
| |17\11
| |
|
| |
| ''1081.{{Overline|81}}''
| |
| |28\18
| |
|
| |
| ''1088.{{Overline|8}}''
| |
| |11\7 | |
|
| |
| ''1100''
| |
| |27\17
| |
|
| |
| ''1111; 1, 3.25''
| |
| |16\10 | |
|
| |
| ''1120''
| |
| |21\13 | |
|
| |
| ''1130; 1.3''
| |
| |-
| |
| |Mi#, Si#
| |
| | D#
| |
| |6#
| |
| |6# | |
| |24\15
| |
|
| |
| ''1120''
| |
| | rowspan="2" | 18\11
| |
|
| |
| ''1145.{{Overline|45}}''
| |
| |30\18 | |
|
| |
| ''1166.{{Overline|6}}''
| |
| |12\7
| |
|
| |
| ''1200''
| |
| | 30\17
| |
|
| |
| ''1235; 3.4''
| |
| |18\10
| |
|
| |
| ''1260''
| |
| |24\13
| |
|
| |
| ''1292; 3.25''
| |
| |- | | |- |
| | Fab, Dob | | | Fab, Dob |
| | Ebb | | | Ebb |
| | 7b, 7c | | | 3b, 3c |
| |7f | | | Fff |
| |25\15 | | | 55\152538; 2.1{{Overline|6}} |
|
| | | 65\182516; 7.75 |
| ''1166.{{Overline|6}}''
| | | 25\72500 |
| |29\18
| | | 60\172482; 1.3{{Overline|18}} |
|
| | | 35\102470; 1.7 |
| ''1127.{{Overline|7}}''
| | | 45\132454.{{Overline|54}} |
| |11\7
| |
|
| |
| ''1100''
| |
| |26\17
| |
|
| |
| ''1070; 1.7''
| |
| |15\10
| |
|
| |
| ''1050''
| |
| |19\13
| |
|
| |
| ''1023; 13''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Eb'''
| |
| |'''7'''
| |
| |'''7'''
| |
| |'''26\15'''
| |
|
| |
| '''''1213.{{Overline|3}}'''''
| |
| |'''19\11'''
| |
|
| |
| '''''1209.{{Overline|09}}'''''
| |
| |'''31\18'''
| |
|
| |
| '''''1205.{{Overline|5}}'''''
| |
| |'''12\7'''
| |
|
| |
| '''''1200'''''
| |
| |'''29\17'''
| |
|
| |
| '''''1194; 8.5'''''
| |
| |'''17\10'''
| |
|
| |
| '''''1190'''''
| |
| |'''22\13'''
| |
|
| |
| '''''1184; 1.625'''''
| |
| |-
| |
| |Fa#, Do#
| |
| |E
| |
| |7#
| |
| |7#
| |
| |27\15
| |
|
| |
| ''1260''
| |
| |20\11
| |
|
| |
| ''1272.{{Overline|72}}''
| |
| | 33\18
| |
|
| |
| ''1283.{{Overline|3}}''
| |
| |13\7
| |
|
| |
| ''1300''
| |
| |32\17
| |
|
| |
| ''1317; 1.41{{Overline|6}}''
| |
| |19\10
| |
|
| |
| ''1330''
| |
| | 25\13 | |
|
| |
| ''1346; 6.5''
| |
| |-
| |
| |Fax, Dox
| |
| |E#
| |
| |7x
| |
| |7x
| |
| |28\15
| |
|
| |
| ''1306.{{Overline|6}}''
| |
| | rowspan="2" |21\11
| |
|
| |
| ''1336.{{Overline|36}}''
| |
| |35\18
| |
|
| |
| ''1361.{{Overline|1}}''
| |
| |14\7
| |
|
| |
| ''1400''
| |
| |35\17
| |
|
| |
| ''1441; 5.{{Overline|6}}''
| |
| |21\10 | |
|
| |
| ''1470''
| |
| |28\13 | |
|
| |
| ''1507; 1.{{Overline|4}}''
| |
| |-
| |
| |Dob, Solb
| |
| |Fb
| |
| |8b, Fc
| |
| |8f
| |
| |29\15
| |
|
| |
| ''1333.{{Overline|3}}''
| |
| |34\18
| |
|
| |
| ''1322.{{Overline|2}}''
| |
| |13\7
| |
|
| |
| ''1300''
| |
| |31\17
| |
|
| |
| ''1276; 2.125''
| |
| |18\10 | |
|
| |
| ''1260''
| |
| |23\13
| |
|
| |
| ''1238; 2.1{{Overline|6}}''
| |
| |- | |
| !Do, Sol
| |
| !F
| |
| !8, F
| |
| !8
| |
| ! colspan="7" |''1400''
| |
| |-
| |
| |Do#, Sol#
| |
| |F#
| |
| |8#, F#
| |
| |8#
| |
| |31\15
| |
|
| |
| ''1446.{{Overline|6}}''
| |
| |23\11
| |
|
| |
| ''1463.{{Overline|63}}''
| |
| |38\18
| |
|
| |
| ''1477.7̄''
| |
| | rowspan="2" |15\7
| |
|
| |
| ''1500''
| |
| |37\17
| |
|
| |
| ''1523; 1.{{Overline|8}}''
| |
| |22\10
| |
|
| |
| ''1540''
| |
| | 29\13
| |
|
| |
| ''1561; 1, 1.1{{Overline|6}}''
| |
| |-
| |
| |Reb, Lab
| |
| |Gb
| |
| | 9b, Gc
| |
| |9f
| |
| |33\15
| |
|
| |
| ''1540''
| |
| |24\11
| |
|
| |
| ''1527.{{Overline|27}}''
| |
| |39\18
| |
|
| |
| ''1516.{{Overline|6}}''
| |
| | 36\17
| |
|
| |
| ''1482; 2.8{{Overline|3}}''
| |
| |21\10
| |
|
| |
| ''1470''
| |
| |27\13
| |
|
| |
| ''1453; 1.{{Overline|18}}''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''G'''
| |
| |'''9, G'''
| |
| |9
| |
| |'''34\15'''
| |
|
| |
| '''''1586.{{Overline|6}}'''''
| |
| |'''25\11'''
| |
|
| |
| '''''1590.{{Overline|90}}'''''
| |
| |'''41\18'''
| |
|
| |
| '''''1594.{{Overline|4}}'''''
| |
| |'''16\7'''
| |
|
| |
| '''''1600'''''
| |
| |'''39\17'''
| |
|
| |
| '''''1605; 1.1{{Overline|3}}'''''
| |
| |'''23\10'''
| |
|
| |
| '''''1610'''''
| |
| |'''30\13'''
| |
|
| |
| '''''1615; 2.6'''''
| |
| |-
| |
| |Re#, La#
| |
| |G#
| |
| |9#, G# | |
| |9#
| |
| |35\15
| |
|
| |
| ''1633.{{Overline|3}}''
| |
| |26\11
| |
|
| |
| ''1654.{{Overline|54}}''
| |
| |43\18
| |
|
| |
| ''1672.{{Overline|2}}''
| |
| | rowspan="2" |17\7
| |
|
| |
| ''1700''
| |
| |42\17
| |
|
| |
| ''1729; 2, 2.{{Overline|3}}''
| |
| |25\10
| |
|
| |
| ''1750''
| |
| |33\13
| |
|
| |
| ''1776; 1.08{{Overline|3}}''
| |
| |- | | |- |
| |Mib, Sib | | | '''Fa, Do''' |
| | Ab | | | '''Eb''' |
| |Xb, Ac | | | '''3''' |
| |Af | | | '''Ff''' |
| |37\15 | | | '''56\15''''''2584; 1.625''' |
|
| | | '''41\11''''''2589; 2.{{Overline|1}}''' |
| ''1726.{{Overline|6}}'' | | | '''67\18''''''2593; 1, 1, 4.{{Overline|6}}''' |
| | 27\11 | | | '''26\7''''''2600''' |
|
| | | '''63\17''''''2606; 1, 8.{{Overline|6}}''' |
| ''1718.{{Overline|18}}'' | | | '''37\10''''''2611; 1, 3.25''' |
| |44\18 | | | '''48\13''''''2618.{{Overline|18}}''' |
|
| |
| ''1711.{{Overline|1}}'' | |
| |41\17 | |
|
| |
| ''1688; 4.25'' | |
| | 24\10 | |
|
| |
| ''1680'' | |
| |31\13
| |
|
| |
| ''1669; 4.{{Overline|3}}'' | |
| |- | | |- |
| |Mi, Si | | | Fa#, Do# |
| |A | | | E |
| |X, A | | | 3# |
| |A | | | F |
| |38\15 | | | 57\152630; 1.3 |
|
| | | 42\112652; 1.58{{Overline|3}} |
| ''1773.{{Overline|3}}''
| | | 69\182670; 1.0{{Overline|3}} |
| |28\11 | | | 27\72700 |
|
| | | 66\172731; 29 |
| ''1781.{{Overline|81}}''
| | | 39\102752; 1.0625 |
| |46\18 | | | 51\132781.{{Overline|81}} |
|
| |
| ''1788.{{Overline|8}}''
| |
| |18\7 | |
|
| |
| ''1800''
| |
| | 44\17 | |
|
| |
| ''1811; 1, 3.25''
| |
| |26\10 | |
|
| |
| ''1820''
| |
| |34\13 | |
|
| |
| ''1830; 1.3''
| |
| |- | | |- |
| |Mi#, Si# | | | Fax, Dox |
| |A# | | | E# |
| |X#, A# | | | 3x |
| |A# | | | F# |
| |39\15 | | | 58\152676; 1.08{{Overline|3}} |
|
| | | rowspan="2" | 43\112715; 1.2{{Overline|6}} |
| ''1820''
| | | 71\182748; 2.58{{Overline|3}} |
| | rowspan="2" |29\11
| | | 28\72800 |
|
| | | 69\172855; 4.8 |
| ''1845.{{Overline|45}}''
| | | 41\102894; 8.5 |
| |48\18
| | | 54\132945.{{Overline|45}} |
|
| |
| ''1866.{{Overline|6}}''
| |
| |19\7
| |
|
| |
| ''1900''
| |
| |47\17
| |
|
| |
| ''1935; 3.4''
| |
| |28\10
| |
|
| |
| ''1960''
| |
| | 37\13
| |
|
| |
| ''1992; 3.25''
| |
| |-
| |
| |Fab, Dob
| |
| |Bbb
| |
| |Ebb, Ccc
| |
| |Bf
| |
| |40\15
| |
|
| |
| ''1866.{{Overline|6}}''
| |
| |47\18 | |
|
| |
| ''1827.{{Overline|7}}''
| |
| |18\7
| |
|
| |
| ''1800''
| |
| |43\17 | |
|
| |
| ''1770; 1.7''
| |
| |25\10
| |
|
| |
| ''1750''
| |
| |32\13
| |
|
| |
| ''1723; 13''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Bb'''
| |
| |Eb, Cc
| |
| |'''B'''
| |
| |'''41\15'''
| |
|
| |
| '''''1913.{{Overline|3}}'''''
| |
| |'''30\11'''
| |
|
| |
| '''''1909.{{Overline|09}}'''''
| |
| |'''49\18'''
| |
|
| |
| '''''1905.{{Overline|5}}'''''
| |
| |'''19\7'''
| |
|
| |
| '''''1900'''''
| |
| |'''46\17''' | |
|
| |
| '''''1894; 8.5'''''
| |
| |'''27\10'''
| |
|
| |
| '''''1890'''''
| |
| |'''35\13'''
| |
|
| |
| '''''1884; 1.625'''''
| |
| |-
| |
| |Fa#, Do#
| |
| |B
| |
| |E, C
| |
| |B#
| |
| | 42\15
| |
|
| |
| ''1960''
| |
| |31\11
| |
|
| |
| ''1972.{{Overline|72}}''
| |
| |51\18
| |
|
| |
| ''1983.{{Overline|3}}''
| |
| |20\7 | |
|
| |
| ''2000''
| |
| |49\17 | |
|
| |
| ''2017; 1.41{{Overline|6}}''
| |
| |29\10 | |
|
| |
| ''2030''
| |
| |38\13
| |
|
| |
| ''2046; 6.5''
| |
| |- | |
| |Fax, Dox
| |
| |B#
| |
| |Ex, Cx
| |
| |Bx
| |
| |43\15
| |
|
| |
| ''2006.{{Overline|6}}''
| |
| | rowspan="2" |32\11
| |
|
| |
| ''2036.{{Overline|36}}''
| |
| |53\18
| |
|
| |
| ''2061.{{Overline|1}}''
| |
| |21\7
| |
|
| |
| ''2100''
| |
| |52\17
| |
|
| |
| ''2141; 5.{{Overline|6}}''
| |
| |31\10
| |
|
| |
| ''2170''
| |
| |41\13
| |
|
| |
| ''2207; 1.{{Overline|4}}''
| |
| |- | | |- |
| | Dob, Solb | | | Dob, Solb |
| |Hb | | | Fb |
| |0b, Dc | | | 4b, 4c |
| |Cf | | | 0f, Gf |
| |44\15 | | | 59\152723; 13 |
|
| | | 70\182709; 1, 2.1 |
| ''2053.{{Overline|3}}''
| | | 27\72700 |
| |52\18
| | | 65\172689; 1, 1.9 |
|
| | | 38\102682; 2.8{{Overline|3}} |
| ''2022.{{Overline|2}}''
| | | 49\132672.{{Overline|72}} |
| |20\7
| |
|
| |
| ''2000''
| |
| |48\17
| |
|
| |
| ''1976; 2.125''
| |
| |28\10
| |
|
| |
| ''1960''
| |
| | 36\13 | |
|
| |
| ''1938; 2.1{{Overline|6}}''
| |
| |-
| |
| !Do, Sol
| |
| !H
| |
| !0, D
| |
| !C
| |
| ! colspan="7" |''2100''
| |
| |-
| |
| |Do#, Sol#
| |
| |Η#
| |
| |0#, D#
| |
| |C#
| |
| |46\15
| |
| ''2146.{{Overline|6}}''
| |
| |34\11
| |
| ''2163.{{Overline|63}}''
| |
| |56\18
| |
| ''2177.{{Overline|7}}''
| |
| | rowspan="2" |22\7
| |
| ''2200''
| |
| |54\17
| |
| ''2223; 1.{{Overline|8}}''
| |
| |32\10 | |
| ''2240''
| |
| |42\13 | |
| ''2261; 1, 1.1{{Overline|6}}''
| |
| |- | |
| |Reb, Lab
| |
| |Cb
| |
| |1b, 1c
| |
| |Df
| |
| |48\15
| |
| ''2240''
| |
| |35\11
| |
| ''2227.{{Overline|27}}''
| |
| |57\18
| |
| ''2216.{{Overline|6}}''
| |
| |53\17
| |
| ''2182; 2.8{{Overline|3}}''
| |
| |31\10
| |
|
| |
| ''2170''
| |
| |40\13
| |
| ''2153; 1.{{Overline|18}}''
| |
| |-
| |
| |'''Re, La'''
| |
| |'''C''' | |
| |'''1'''
| |
| |'''D'''
| |
| |'''49\15'''
| |
| '''''2286.{{Overline|6}}'''''
| |
| |'''36\11'''
| |
| '''''2290.{{Overline|90}}'''''
| |
| |'''59\18'''
| |
| '''''2294.{{Overline|4}}'''''
| |
| |'''23\7'''
| |
| '''''2300'''''
| |
| |'''56\17'''
| |
| '''''2305; 1.1{{Overline|3}}'''''
| |
| |'''33\10'''
| |
| '''2310'''
| |
| |'''43\13'''
| |
| '''''2315; 2.6'''''
| |
| |-
| |
| |Re#, La#
| |
| |C#
| |
| |1#
| |
| |D#
| |
| |50\15
| |
| ''2223.{{Overline|3}}''
| |
| |37\11
| |
| ''2354.{{Overline|54}}''
| |
| |61\18
| |
| ''2372.''{{Overline|2}}
| |
| | rowspan="2" |24\7
| |
| ''2400''
| |
| |59\17
| |
| ''2429; 2, 2.{{Overline|3}}''
| |
| |35\10
| |
| ''2450''
| |
| |46\13
| |
| ''2476; 1.08{{Overline|3}}''
| |
| |-
| |
| |Mib, Sib
| |
| |Db
| |
| |2b, 2c
| |
| |Ef
| |
| |52\15
| |
| ''2426.{{Overline|6}}''
| |
| |38\11
| |
| ''2418.{{Overline|18}}''
| |
| |62\18
| |
| ''2411.{{Overline|1}}''
| |
| |58\17
| |
| ''2388; 4.25''
| |
| |34\10
| |
| ''2380''
| |
| |44\13
| |
| ''2369; 4.{{Overline|3}}''
| |
| |-
| |
| |Mi, Si
| |
| |D
| |
| |2
| |
| |E
| |
| |53\15
| |
| ''2473,{{Overline|3}}''
| |
| |39\11
| |
| ''2481.{{Overline|81}}''
| |
| |64\11
| |
| ''2488.{{Overline|8}}''
| |
| |25\7
| |
| ''2500''
| |
| |61\17
| |
| ''2511; 1, 3.25''
| |
| |36\10
| |
| ''2520''
| |
| |47\13
| |
| ''2530; 1.3''
| |
| |- | | |- |
| |Mi#, Si#
| | ! Do, Sol |
| |D#
| | ! F |
| |2#
| | ! 4 |
| |E#
| | ! 0, G |
| |54\15
| | ! 60\152769; 4.'''{{Overline|3}}''' |
| ''2520''
| | ! 44\112778; 1.0{{Overline|5}} |
| | rowspan="2" |40\11
| | ! 72\182787; 3.1 |
| ''2545.{{Overline|45}}''
| | ! 28\72800 |
| |66\18
| | ! 68\172813; 1, 3.8{{Overline|3}} |
| ''2566.{{Overline|6}}''
| | ! 40\102823; 1.{{Overline|8}} |
| |26\7
| | ! 52\132836.{{Overline|36}} |
| ''2600''
| |
| |64\17
| |
| ''2635; 3.4''
| |
| |38\10
| |
| ''2660''
| |
| |50\13
| |
| ''2692; 3.25''
| |
| |-
| |
| |Fab, Dob
| |
| |Ebb
| |
| |3b, 3c
| |
| |Fff
| |
| |55\15
| |
| ''2566.{{Overline|6}}''
| |
| |65\18
| |
| ''2527.{{Overline|7}}''
| |
| |25\7
| |
| ''2500''
| |
| |60\17
| |
| ''2470; 1.7''
| |
| |35\10
| |
| ''2450''
| |
| |45\13
| |
| ''2423; 13''
| |
| |-
| |
| |'''Fa, Do'''
| |
| |'''Eb'''
| |
| |'''3'''
| |
| |'''Ff'''
| |
| |'''56\15'''
| |
| '''''2613.{{Overline|3}}'''''
| |
| |'''41\11'''
| |
| '''''2609.{{Overline|09}}'''''
| |
| |'''67\18'''
| |
| '''''2605.{{Overline|5}}'''''
| |
| |'''26\7'''
| |
| '''''2600'''''
| |
| |'''63\17'''
| |
| '''''2594; 8.5'''''
| |
| |'''37\10'''
| |
| '''''2590'''''
| |
| |'''48\13'''
| |
| '''''2584; 1.625'''''
| |
| |-
| |
| |Fa#, Do#
| |
| |E
| |
| |3#
| |
| |F
| |
| |57\15
| |
| ''2660''
| |
| |42\11
| |
| ''2672.{{Overline|72}}''
| |
| |69\18
| |
| ''2683.{{Overline|3}}''
| |
| |27\7
| |
| ''2700''
| |
| |66\17
| |
|
| |
| ''2717; 1.41{{Overline|6}}''
| |
| |39\10
| |
| ''2730''
| |
| |51\13
| |
|
| |
| ''2746; 6.5''
| |
| |-
| |
| |Fax, Dox
| |
| |E#
| |
| |3x
| |
| |F#
| |
| |58\15
| |
|
| |
| ''2706.{{Overline|6}}''
| |
| | rowspan="2" |43\11
| |
| ''2736.{{Overline|36}}''
| |
| |71\18
| |
|
| |
| ''2761.{{Overline|1}}''
| |
| |28\7
| |
| ''2800''
| |
| |69\17
| |
|
| |
| ''2841; 5.{{Overline|6}}''
| |
| |41\10
| |
| ''2870''
| |
| |54\13
| |
|
| |
| ''2907; 1.{{Overline|4}}''
| |
| |-
| |
| |Dob, Solb
| |
| |Fb
| |
| |4b, 4c
| |
| |0f, Gf
| |
| |59\15
| |
|
| |
| ''2753.{{Overline|3}}''
| |
| |70\18
| |
|
| |
| ''2722.{{Overline|2}}''
| |
| |27\7
| |
| ''2700''
| |
| |65\17
| |
| ''2676; 2.125''
| |
| |38\10
| |
| ''2660''
| |
| |49\13
| |
| ''2638; 2.1{{Overline|6}}''
| |
| |-
| |
| !Do, Sol
| |
| !F
| |
| !4
| |
| !0, G
| |
| ! colspan="7" |''2800''
| |
| |} | | |} |
|
| |
| ==Intervals==
| |
| {| class="wikitable"
| |
| !Generators
| |
| ! Sesquitave notation
| |
| !Interval category name
| |
| !Generators
| |
| !Notation of 3/2 inverse
| |
| !Interval category name
| |
| |-
| |
| | colspan="6" |The 4-note MOS has the following intervals (from some root):
| |
| |-
| |
| |0
| |
| |Do, Sol
| |
| |perfect unison
| |
| |0
| |
| |Do, Sol
| |
| |sesquitave (just fifth)
| |
| |-
| |
| |1
| |
| |Fa, Do
| |
| |perfect fourth
| |
| | -1
| |
| |Re, La
| |
| |perfect second
| |
| |-
| |
| |2
| |
| |Mib, Sib
| |
| |minor third
| |
| | -2
| |
| |Mi, Si
| |
| |major third
| |
| |-
| |
| |3
| |
| |Reb, Lab
| |
| |diminished second
| |
| | -3
| |
| |Fa#, Do#
| |
| |augmented fourth
| |
| |-
| |
| | colspan="6" |The chromatic 7-note MOS also has the following intervals (from some root):
| |
| |-
| |
| |4
| |
| |Dob, Solb
| |
| |diminished sesquitave
| |
| | -4
| |
| | Do#, Sol#
| |
| |augmented unison (chroma)
| |
| |-
| |
| |5
| |
| |Fab, Dob
| |
| |diminished fourth
| |
| | -5
| |
| |Re#, La#
| |
| |augmented second
| |
| |-
| |
| |6
| |
| | Mibb, Sibb
| |
| |diminished third
| |
| | -6
| |
| |Mi#, Si#
| |
| |augmented third
| |
| |}
| |
| | | |
| ==Genchain==
| | == Modes == |
|
| |
| The generator chain for this scale is as follows:
| |
| {| class="wikitable"
| |
| |Mibb
| |
|
| |
| Sibb
| |
| |Fab
| |
|
| |
| Dob
| |
| |Dob
| |
|
| |
| Solb
| |
| |Reb
| |
|
| |
| Lab
| |
| |Mib
| |
|
| |
| Sib
| |
| |Fa
| |
|
| |
| Do
| |
| |Do
| |
|
| |
| Sol
| |
| |Re
| |
|
| |
| La
| |
| |Mi
| |
|
| |
| Si
| |
| |Fa#
| |
|
| |
| Do#
| |
| |Do#
| |
|
| |
| Sol#
| |
| |Re#
| |
|
| |
| La#
| |
| |Mi#
| |
|
| |
| Si#
| |
| |-
| |
| |d3
| |
| |d4
| |
| |d5
| |
| |d2
| |
| | m3
| |
| |P4
| |
| |P1
| |
| |P2
| |
| |M3
| |
| |A4
| |
| | A1
| |
| |A2
| |
| |A3
| |
| |}
| |
|
| |
| ==Modes== | |
|
| |
| The mode names are based on the species of fifth: | | The mode names are based on the species of fifth: |
| {| class="wikitable" | | {{MOS modes |
| !Mode
| | | Mode Names= |
| !Scale
| | Lydian $ |
| ![[Modal UDP Notation|UDP]]
| | Minor $ |
| ! colspan="3" |Interval type
| | Major $ |
| |-
| | Phrygian $ |
| !name
| | |} |
| !pattern
| | |
| !notation
| | == Temperaments == |
| !2nd
| | The most basic rank-2 temperament interpretation of angel is '''Napoli'''. The name "Napoli" comes from the “Neapolitan” sixth triad spelled <code>root-(p-2g)-(2p-3g)</code> ({{nowrap|p {{=}} 3/2|g {{=}} the whole tone}}) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations. |
| !3rd
| | |
| !4th
| | === Napoli-Meantone === |
| |-
| |
| |Lydian
| |
| |LLLs
| |
| |<nowiki>3|0</nowiki>
| |
| |P
| |
| |M
| |
| | A
| |
| |-
| |
| |Major
| |
| |LLsL
| |
| |<nowiki>2|1</nowiki>
| |
| |P
| |
| |M
| |
| |P
| |
| |-
| |
| | Minor
| |
| |LLsL
| |
| |<nowiki>1|2</nowiki>
| |
| | P
| |
| |m
| |
| |P
| |
| |-
| |
| |Phrygian
| |
| |sLLL
| |
| |<nowiki>0|3</nowiki>
| |
| |d
| |
| |m
| |
| | P
| |
| |} | |
|
| |
| ==Temperaments== | |
|
| |
| The most basic rank-2 temperament interpretation of angel is '''Napoli'''. The name "Napoli" comes from the “Neapolitan” sixth triad spelled <code>root-(p-2g)-(2p-3g)</code> (p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations. | |
| ==='''Napoli-Meantone'''=== | |
|
| |
| [[Subgroup]]: 3/2.6/5.8/5 | | [[Subgroup]]: 3/2.6/5.8/5 |
| | | |
Line 2,960: |
Line 668: |
|
| |
|
| [[Optimal ET sequence]]: ~(7edf, 11edf, 18edf) | | [[Optimal ET sequence]]: ~(7edf, 11edf, 18edf) |
| ==='''Napoli-Archy'''=== | | |
|
| | === Napoli-Archy === |
| [[Subgroup]]: 3/2.7/6.14/9 | | [[Subgroup]]: 3/2.7/6.14/9 |
| | | |
Line 2,971: |
Line 679: |
|
| |
|
| [[Optimal ET sequence]]: ~(7edf, 10edf, 13edf, 16edf) | | [[Optimal ET sequence]]: ~(7edf, 10edf, 13edf, 16edf) |
| ===Scale tree=== | | |
|
| | === Scale tree === |
| The spectrum looks like this: | | The spectrum looks like this: |
| {{Scale tree|Comments=3/2:Napoli-Meantone starts here;2/1:Napoli-Meantone ends, Napoli-Pythagorean begins;5/2:Napoli-Neogothic heartland is from here...;8/3:...to here;3/1:Napoli-Pythagorean ends, Napoli-Archy begins;5/1:Napoli-Archy ends}} | | {{MOS tuning spectrum |
| | | 3/2 = Napoli-Meantone starts here |
| | | 2/1 = Napoli-Meantone ends, Napoli-Pythagorean begins |
| | | 5/2 = Napoli-Neogothic heartland is from here... |
| | | 8/3 = ...to here |
| | | 3/1 = Napoli-Pythagorean ends, Napoli-Archy begins |
| | | 5/1 = Napoli-Archy ends |
| | }} |