961edo: Difference between revisions

Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|961}} ==Theory== 961et tempers out 32805/32768 in the 5-limit; 14348907/14336000, 4375/4374 and 65625/65536 in the 7-limit; 10192158..."
 
ArrowHead294 (talk | contribs)
mNo edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|961}}
{{ED intro}}
==Theory==
 
961et tempers out [[32805/32768]] in the 5-limit; [[14348907/14336000]], [[4375/4374]] and [[65625/65536]] in the 7-limit; 1019215872/1019046875, 2097152/2096325, 26214400/26198073, 5767168/5764801 and 3294225/3294172 in the 11-limit.
== Theory ==
===Odd harmonics===  
961edo has a reasonable 7-limit interpretation. The equal temperament [[Tempering out|tempers out]] the [[schisma]] in the 5-limit; [[4375/4374]], [[65625/65536]], and [[14348907/14336000]] in the 7-limit, supporting [[pontiac]], the {{nowrap|395 & 566}} temperament.
 
In the 11-limit, the 961e [[val]] {{val| 961 1523 2231 '''2698''' '''3324''' }} scores the best, which tempers out 102487/102400 and 234375/234256. It prompts us to consider the 961de val {{val| 961 1523 2231 '''2697''' '''3324''' }}, which tempers out [[3025/3024]] and 184877/184320. The [[patent val]] {{val| 961 1523 2231 '''2698''' '''3325''' }} tempers out [[4000/3993]] and 46656/46585.
 
It works much better as a 2.3.5.7.13.17 [[subgroup temperament]], in which case it tempers out [[10985/10976]], [[1275/1274]], [[2025/2023]] and [[4914/4913]].  
 
=== Odd harmonics ===  
{{Harmonics in equal|961}}
{{Harmonics in equal|961}}
===Subsets and supersets===
 
961 factors into 31<sup>2</sup> with [[31edo]] as subset edo.
=== Subsets and supersets ===
==Regular temperament properties==
Since 961 factors into {{factorization|961}}, 961edo has [[31edo]] as its subset edo.
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
|-
![[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
|-
|-
|2.3
! rowspan="2" | [[Subgroup]]
|{{monzo|-1523 961}}
! rowspan="2" | [[Comma list]]
|{{val|961 1523}}
! rowspan="2" | [[Mapping]]
| 0.0587
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo|-1523 961}}
| {{mapping| 961 1523 }}
| +0.0587
| 0.0587
| 0.0587
| 4.70
| 4.70
|-
|-
|2.3.5
| 2.3.5
|32805/32768, {{monzo|-22 -137 103}}
| 32805/32768, {{monzo| -22 -137 103 }}
|{{val|961 1523 2231}}
| {{mapping| 961 1523 2231 }}
| 0.1060
| +0.1060
| 0.0823
| 0.0823
| 6.59
| 6.59
|-
|-
|2.3.5.7
| 2.3.5.7
|4375/4374, 32805/32768, 65625/65536
| 4375/4374, 32805/32768, {{monzo| 15 9 14 -22 }}
|{{val|961 1523 2231 2698}}
| {{mapping| 961 1523 2231 2698 }}
| 0.0648
| +0.0648
| 0.1008
| 0.1008
| 8.01
| 8.01
|}
|}
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per 8ve
|-
! Generator<br>(reduced)
! Periods<br />per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
|1
| 1
|399\961
| 399\961
|498.231
| 498.231
|4/3
| 4/3
|[[Helmholtz]] / [[Pontiac]]
| [[Pontiac]]
|}
|}
==Scales==
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
== Scales ==
* [[Haumea5]]
* [[Haumea5]]
* [[Haumea9]]
* [[Haumea9]]
* [[Haumea14]]
* [[Haumea14]]
* [[Haumea19]]
* [[Haumea19]]