444edo: Difference between revisions

Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|444}} == Theory == 444et is only consistent to the 5-limit. Using the patent val, it tempers out 67108864/66976875, 29360128/29296875 and 250047/..."
 
Francium (talk | contribs)
m changed EDO intro to ED intro
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|444}}
{{ED intro}}


== Theory ==
== Theory ==
444et is only consistent to the 5-limit. Using the patent val, it tempers out 67108864/66976875, 29360128/29296875 and [[250047/250000]] in the 7-limit; 100663296/100656875, 2097152/2096325, [[131072/130977]], 172032/171875, [[5632/5625]], 47265625/47258883, [[3025/3024]], 160083/160000, 42592/42525, 391314/390625, 102487/102400, 322102/321489 and [[1771561/1769472]] in the 11-limit. It provides the [[optimal patent val]] for the [[magnesium]] temperament.
444edo is only [[consistent]] to the [[5-odd-limit]] since [[harmonic]] [[7/1|7]] is about halfway between its steps. Since {{nowrap|444 {{=}} 4 × 111}}, its harmonic [[3/1|3]] derives from [[111edo]]. Using the [[patent val]], the equal temperament [[tempering out|tempers out]] [[250047/250000]], 29360128/29296875, 67108864/66976875 and in the 7-limit; [[3025/3024]], [[5632/5625]], 42592/42525, 102487/102400, [[131072/130977]], 160083/160000, 172032/171875, 322102/321489, 391314/390625 and [[1771561/1769472]] in the 11-limit. It [[support]]s the [[magnesium]] temperament.


=== Odd harmonics ===
=== Odd harmonics ===
Line 9: Line 9:


=== Subsets and supersets ===
=== Subsets and supersets ===
444 factors into 2<sub>2</sub> × 3 × 37, with subset edos {{EDOs|2, 3, 4, 6, 12, 37, 74, 111, 148, and 222}}. [[1332edo]], which triples it, gives a good correction to the harmonic 7.  
Since 444 factors into {{factorization|444}}, 444edo has subset edos {{EDOs| 2, 3, 4, 6, 12, 37, 74, 111, 148, and 222 }}. [[1332edo]], which triples it, gives a good correction to the harmonic 7.  


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
|-
![[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
|-
|-
|2.3
! rowspan="2" | [[Subgroup]]
|{{monzo|176 -111}}
! rowspan="2" | [[Comma list]]
|{{mapping|444 704}}
! rowspan="2" | [[Mapping]]
| -0.2359
! rowspan="2" | Optimal<br />8ve stretch (¢)
| 0.2358
! colspan="2" | Tuning error
| 8.72
|-
|-
|2.3.5
! [[TE error|Absolute]] (¢)
|{{monzo|41 -20 -4}}, {{monzo|-29 -11 20}}
! [[TE simple badness|Relative]] (%)
|{{mapping|444 704 1031}}
|-
| -0.1821
| 2.3.5
| {{monzo| 41 -20 -4 }}, {{monzo| -29 -11 20 }}
| {{mapping| 444 704 1031 }}
| −0.1821
| 0.2071
| 0.2071
| 7.66
| 7.66
Line 39: Line 33:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per 8ve
|-
! Generator<br>(reduced)*
! Periods<br />per 8ve
! Cents<br>(reduced)*
! Generator*
! Associated<br>Ratio*
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
|1
| 1
|13\444
| 13\444
|35.14
| 35.14
|1990656/1953125
| 1990656/1953125
|[[Gammic]]
| [[Gammic]] (5-limit)
|-
|-
|4
| 4
|184\444<br>(38\444)
| 184\444<br>(38\444)
|497.30<br>(102.70)
| 497.30<br>(102.70)
|4/3<br>(35/33)
| 4/3<br>(35/33)
|[[Undim]]
| [[Undim]] (444d)
|}
|}
 
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct