954edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 241410939 - Original comment: **
 
ArrowHead294 (talk | contribs)
mNo edit summary
 
(15 intermediate revisions by 9 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-07-14 19:33:35 UTC</tt>.<br>
 
: The original revision id was <tt>241410939</tt>.<br>
954edo is a very strong 17-limit system, [[consistency|distinctly consistent]] in the 17-limit, and is a [[zeta edo|zeta peak, integral and gap edo]]. The tuning of the primes to 17 are all flat, and the equal temperament [[tempering out|tempers out]] the [[ennealimma]], {{monzo| 1 -27 18 }}, in the 5-limit and [[2401/2400]] and [[4375/4374]] in the 7-limit, so that it [[support]]s the [[ennealimmal]] temperament. In the 11-limit it tempers out [[3025/3024]], [[9801/9800]], 43923/43904, and 151263/151250 so that it supports hemiennealimmal. In the 13-limit it tempers out [[4225/4224]] and [[10648/10647]] and in the 17-limit 2431/2430 and [[2601/2600]]. It supports and gives the [[optimal patent val]] for the [[semihemiennealimmal]] temperament.
: The revision comment was: <tt></tt><br>
 
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
=== Prime harmonics ===
<h4>Original Wikitext content:</h4>
{{Harmonics in equal|954|columns=13}}
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //954 equal division// divides the octave into 954 equal parts of 1.258 cents each. It is a very strong 17-limit system, uniquely [[consistent]] in the 17-limit, and is the fifteenth [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta integral edo]] and is also a zeta gap edo. The tuning of the primes to 17 are all flat, and it tempers out the ennealimma, |1 -27 18&gt;, in the 5-limit and 2401/2400 and 4375/4374 in the 7-limit, so that it supports [[Ragismic microtemperaments#Ennealimmal|ennealimmal temperament]]. In the 11-limit it tempers out 3025/3024, 9801/9800, 43923/43904, and 151263/151250 so that it supports hemiennealimmal. In the 13-limit it tempers out 4225/4224 and 10648/10647 and in the 17-limit 2431/2430 and 2601/2600. It supports and gives the optimal patent val for semihemiennealimmal temperament.</pre></div>
{{Harmonics in equal|954|start=14|columns=17|collapsed=1|title=Approximation of prime harmonics in 954edo (continued)}}
<h4>Original HTML content:</h4>
{{Harmonics in equal|954|start=31|columns=18|collapsed=1|title=Approximation of prime harmonics in 954edo (continued)}}
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;954edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;954 equal division&lt;/em&gt; divides the octave into 954 equal parts of 1.258 cents each. It is a very strong 17-limit system, uniquely &lt;a class="wiki_link" href="/consistent"&gt;consistent&lt;/a&gt; in the 17-limit, and is the fifteenth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists"&gt;zeta integral edo&lt;/a&gt; and is also a zeta gap edo. The tuning of the primes to 17 are all flat, and it tempers out the ennealimma, |1 -27 18&amp;gt;, in the 5-limit and 2401/2400 and 4375/4374 in the 7-limit, so that it supports &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;ennealimmal temperament&lt;/a&gt;. In the 11-limit it tempers out 3025/3024, 9801/9800, 43923/43904, and 151263/151250 so that it supports hemiennealimmal. In the 13-limit it tempers out 4225/4224 and 10648/10647 and in the 17-limit 2431/2430 and 2601/2600. It supports and gives the optimal patent val for semihemiennealimmal temperament.&lt;/body&gt;&lt;/html&gt;</pre></div>
 
=== Subsets and supersets ===
Since 954 = {{factorization|954}}, 954edo has subset edos {{EDOs| 2, 3, 6, 9, 18, 53, 106, 159, 318, 477 }}.  
 
[[Category:Ennealimmal]]
[[Category:Hemiennealimmal]]
[[Category:Semihemiennealimmal]]