|
|
(7 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-07-13 14:51:06 UTC</tt>.<br>
| | |
| : The original revision id was <tt>241206429</tt>.<br>
| | 391edo has a sharp tendency, with [[prime harmonic]]s 3 to 13 all tuned sharp. The equal temperament [[tempering out|tempers out]] [[5120/5103]], 420175/419904, and 29360128/29296875 in the 7-limit, and provides the [[optimal patent val]] for the [[hemifamity]] temperament, and [[septiquarter]], the {{nowrap|99 & 292}} temperament. It tempers out [[3025/3024]], [[4000/3993]], [[5632/5625]], and [[6250/6237]] in the 11-limit; and [[676/675]], [[1716/1715]] and [[4225/4224]] in the 13-limit, and provides further optimal patent vals for temperaments tempering out 5120/5103 such as [[alphaquarter]]. |
| : The revision comment was: <tt></tt><br>
| | |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | | The 391bcde [[val]] provides a tuning for 11-limit miracle very close to the POTE tuning. |
| <h4>Original Wikitext content:</h4>
| | |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //391 equal division// divides the octave into 391 equal parts of 3.069 cents each. It tempers out 5120/5103 and 420175/419904 in the 7-limit, and provides the [[optimal patent val]] for the hemifamity planar temperament and the 5&94 temperament. It tempers out 6250/6237, 4000/3993, 5632/5625 and 3025/3024 in the 11-limit and 676/675, 1716/1715 and 4225/4224 in the 13-limit, and provides further optimal patent vals for temperaments tempering out 5120/5103.</pre></div>
| | === Odd harmonics === |
| <h4>Original HTML content:</h4>
| | {{Harmonics in equal|391}} |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>391edo</title></head><body>The <em>391 equal division</em> divides the octave into 391 equal parts of 3.069 cents each. It tempers out 5120/5103 and 420175/419904 in the 7-limit, and provides the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for the hemifamity planar temperament and the 5&amp;94 temperament. It tempers out 6250/6237, 4000/3993, 5632/5625 and 3025/3024 in the 11-limit and 676/675, 1716/1715 and 4225/4224 in the 13-limit, and provides further optimal patent vals for temperaments tempering out 5120/5103.</body></html></pre></div>
| | |
| | === Subsets and supersets === |
| | Since 391 factors into {{factorization|391}}, 391edo contains [[17edo]] and [[23edo]] as subsets. |
| | |
| | [[Category:Hemifamity]] |
| | [[Category:Septiquarter]] |
| | [[Category:Alphaquarter]] |