164edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 214234450 - Original comment: ** |
m changed EDO intro to ED intro |
||
(15 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
164 = 4 | == Theory == | ||
164 = 4 × 41, and 164edo shares its [[perfect fifth|fifth]] with [[41edo]]. In the 5-limit, 164et tempers out the [[würschmidt comma]], 393216/390625, and the [[vulture comma]], {{monzo| 24 -21 4 }}. It supplies the [[optimal patent val]] for the [[würschmidt]] temperament. | |||
In the [[patent val]] {{val| 164 260 381 '''460''' '''567''' 607 }}, it tempers out [[196/195]], [[352/351]], [[385/384]], [[441/440]], [[676/675]], and supplies the optimal patent val for the 7-limit, 1/41 octave period {{nowrap|41 & 123}} temperament, and the 13-limit [[Gamelismic family #Portent|momentous]] temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440. | |||
164 = 4 | |||
In the alternative val 164de {{val| 164 260 381 '''461''' '''568''' 607 }}, it tempers out [[243/242]], [[351/350]], [[364/363]], [[640/637]], [[676/675]], [[729/728]], and [[1575/1573]]. The 164dg val is a good tuning for 7- to 19-limit [[buzzard]] temperament, although if harmonic 11 is desired it is only easily accessible through the patent mapping. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|164}} | |||
=== Subsets and supersets === | |||
Since {{nowrap|164 {{=}} {{factorization|164}}}}, 164edo has subset edos {{EDOs| 2, 4, 41, 82 }}. [[328edo]], which doubles it, provides good correction for the approximation to harmonics 7 and 11, and is [[consistent]] in the [[13-odd-limit]]. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| 393216/390625, {{monzo| 24 -21 4 }} | |||
| {{mapping| 164 260 381 }} | |||
| −0.316 | |||
| 0.262 | |||
| 3.58 | |||
|- | |||
| 2.3.5.13 | |||
| 676/675, 256000/255879, 393216/390625 | |||
| {{mapping| 164 260 381 607 }} | |||
| −0.300 | |||
| 0.229 | |||
| 3.13 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 47\164 | |||
| 343.90 | |||
| 8000/6561 | |||
| [[Geb]] | |||
|- | |||
| 1 | |||
| 49\164 | |||
| 358.54 | |||
| 16/13 | |||
| [[Restles]] (164) | |||
|- | |||
| 1 | |||
| 53\164 | |||
| 387.80 | |||
| 5/4 | |||
| [[Würschmidt]] | |||
|- | |||
| 1 | |||
| 53\164 | |||
| 475.61 | |||
| 320/243 | |||
| [[Vulture]] | |||
|- | |||
| 1 | |||
| 69\164 | |||
| 504.88 | |||
| 104976/78125 | |||
| [[Countermeantone]] | |||
|- | |||
| 2 | |||
| 17\164 | |||
| 124.39 | |||
| 275/256 | |||
| [[Semivulture]] (164) | |||
|- | |||
| 2 | |||
| 25\164 | |||
| 182.93 | |||
| 10/9 | |||
| [[Unidecmic]] | |||
|- | |||
| 4 | |||
| 68\164<br />(14\164) | |||
| 497.56<br />(102.44) | |||
| 4/3<br />(35/33) | |||
| [[Undim]] (164deff) / [[unlit]] (164f) | |||
|- | |||
| 41 | |||
| 53\164<br />(1\164) | |||
| 387.80<br />(7.32) | |||
| 5/4<br />(32805/32768) | |||
| [[Countercomp]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Würschmidt]] |