|
|
(16 intermediate revisions by 9 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2012-01-03 23:27:59 UTC</tt>.<br>
| |
| : The original revision id was <tt>289422273</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //137 equal division// divides the octave into 137 equal parts of 8.759 cents each. It is the [[optimal patent val]] for 7-limit [[Semicomma family|orwell temperament]] and for the planar temperament tempering out 2430/2401. It tempers out 2109375/2097152 (the semicomma) in the 5-limit; 225/224 and 1728/1715 in the 7-limit; 243/242 in the 11-limit; 351/350 in the 13-limit; 375/374 and 442/441 in the 17-limit; and 324/323 and 495/494 in the 19-limit. Since it is the 33rd [[prime numbers|prime number]], 137edo has no proper divisors aside from 1.
| |
|
| |
|
| A diagram of 7-limit Orwell based on the 31\137edo generator:
| | == Theory == |
| [[image:137edo_MOS_031_demo_correction.png]]
| | 137edo is a fairly accurate 5-limit temperament and also a strong no-7 19-limit temperament. The equal temperament [[tempering out|tempers out]] 2109375/2097152 ([[semicomma]]), {{monzo| -13 17 -6 }} ([[graviton]]), {{monzo| 8 14 -13 }} ([[parakleisma]]), and {{monzo| -29 -11 20 }} (gammic comma) in the 5-limit. Using the [[patent val]], it tempers out [[225/224]], [[1728/1715]], 2430/2401 in the 7-limit; [[243/242]] in the 11-limit; [[351/350]] in the 13-limit; [[375/374]] and [[442/441]] in the 17-limit; and [[324/323]] and [[495/494]] in the 19-limit. It provides the [[optimal patent val]] for 7-limit [[orwell]] temperament and for the planar temperament [[tempering out]] [[2430/2401]]. |
| [[file:137edo_MOS_031.svg]]</pre></div>
| | |
| <h4>Original HTML content:</h4>
| | === Prime harmonics === |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>137edo</title></head><body>The <em>137 equal division</em> divides the octave into 137 equal parts of 8.759 cents each. It is the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 7-limit <a class="wiki_link" href="/Semicomma%20family">orwell temperament</a> and for the planar temperament tempering out 2430/2401. It tempers out 2109375/2097152 (the semicomma) in the 5-limit; 225/224 and 1728/1715 in the 7-limit; 243/242 in the 11-limit; 351/350 in the 13-limit; 375/374 and 442/441 in the 17-limit; and 324/323 and 495/494 in the 19-limit. Since it is the 33rd <a class="wiki_link" href="/prime%20numbers">prime number</a>, 137edo has no proper divisors aside from 1.<br />
| | {{Harmonics in equal|137}} |
| <br />
| | |
| A diagram of 7-limit Orwell based on the 31\137edo generator:<br />
| | === Subsets and supersets === |
| <!-- ws:start:WikiTextLocalImageRule:0:&lt;img src=&quot;/file/view/137edo_MOS_031_demo_correction.png/285785730/137edo_MOS_031_demo_correction.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/137edo_MOS_031_demo_correction.png/285785730/137edo_MOS_031_demo_correction.png" alt="137edo_MOS_031_demo_correction.png" title="137edo_MOS_031_demo_correction.png" /><!-- ws:end:WikiTextLocalImageRule:0 --><br />
| | 137edo is the 33rd [[prime edo]], following [[131edo]] and before [[139edo]]. [[274edo]], which doubles it, provides a correction for its approximation to harmonic 7. |
| <!-- ws:start:WikiTextFileRule:1:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file/137edo_MOS_031.svg?h=52&amp;w=320&quot; class=&quot;WikiFile&quot; id=&quot;wikitext@@file@@137edo_MOS_031.svg&quot; title=&quot;File: 137edo_MOS_031.svg&quot; width=&quot;320&quot; height=&quot;52&quot; /&gt; --><div class="objectEmbed"><a href="/file/view/137edo_MOS_031.svg/285785200/137edo_MOS_031.svg" onclick="ws.common.trackFileLink('/file/view/137edo_MOS_031.svg/285785200/137edo_MOS_031.svg');"><img src="http://www.wikispaces.com/i/mime/32/empty.png" height="32" width="32" alt="137edo_MOS_031.svg" /></a><div><a href="/file/view/137edo_MOS_031.svg/285785200/137edo_MOS_031.svg" onclick="ws.common.trackFileLink('/file/view/137edo_MOS_031.svg/285785200/137edo_MOS_031.svg');" class="filename" title="137edo_MOS_031.svg">137edo_MOS_031.svg</a><br /><ul><li><a href="/file/detail/137edo_MOS_031.svg">Details</a></li><li><a href="/file/view/137edo_MOS_031.svg/285785200/137edo_MOS_031.svg">Download</a></li><li style="color: #666">46 KB</li></ul></div></div><!-- ws:end:WikiTextFileRule:1 --></body></html></pre></div>
| | |
| | == Regular temperament properties == |
| | {| class="wikitable center-4 center-5 center-6" |
| | |- |
| | ! rowspan="2" | [[Subgroup]] |
| | ! rowspan="2" | [[Comma list]] |
| | ! rowspan="2" | [[Mapping]] |
| | ! rowspan="2" | Optimal<br />8ve stretch (¢) |
| | ! colspan="2" | Tuning error |
| | |- |
| | ! [[TE error|Absolute]] (¢) |
| | ! [[TE simple badness|Relative]] (%) |
| | |- |
| | | 2.3 |
| | | {{monzo| -217 137 }} |
| | | {{mapping| 137 217 }} |
| | | +0.3865 |
| | | 0.3866 |
| | | 4.41 |
| | |- |
| | | 2.3.5 |
| | | {{monzo| -21 3 7 }}, {{monzo| -13 17 -6 }} |
| | | {{mapping| 137 217 318 }} |
| | | +0.3887 |
| | | 0.3157 |
| | | 3.60 |
| | |} |
| | |
| | === Rank-2 temperaments === |
| | {| class="wikitable center-all left-5" |
| | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator |
| | |- |
| | ! Periods<br />per 8ve |
| | ! Generator* |
| | ! Cents* |
| | ! Associated<br />ratio* |
| | ! Temperaments |
| | |- |
| | | 1 |
| | | 3\137 |
| | | 26.28 |
| | | 1594323/1562500 |
| | | [[Sfourth]] (5-limit) |
| | |- |
| | | 1 |
| | | 4\137 |
| | | 35.04 |
| | | 1990656/1953125 |
| | | [[Gammic]] (137d) / [[gammy]] (137) |
| | |- |
| | | 1 |
| | | 31\137 |
| | | 271.53 |
| | | 75/64 |
| | | [[Orwell]] (137e) / [[sabric]] (137d) |
| | |- |
| | | 1 |
| | | 36\137 |
| | | 315.33 |
| | | 6/5 |
| | | [[Parakleismic]] |
| | |- |
| | | 1 |
| | | 53\137 |
| | | 464.23 |
| | | 72/55 |
| | | [[Borwell]] |
| | |- |
| | | 1 |
| | | 59\137 |
| | | 516.79 |
| | | 27/20 |
| | | [[Marvo]] (137) |
| | |- |
| | | 1 |
| | | 63\137 |
| | | 551.82 |
| | | 11/8 |
| | | [[Emka]] (137d) / [[emkay]] (137) |
| | |} |
| | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct |
| | |
| | == Diagrams == |
| | A diagram of 7-limit orwell based on the 31\137edo generator: |
| | |
| | [[File:137edo_MOS_031_demo_correction.png|alt=137edo_MOS_031_demo_correction.png|137edo_MOS_031_demo_correction.png]] |
| | |
| | [[:File:137edo_MOS_031.svg|137edo_MOS_031.svg]] |
| | |
| | [[Category:Nuwell]] |
| | [[Category:Orwell]] |
| | [[Category:Orson]] |