User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions

No edit summary
 
(17 intermediate revisions by the same user not shown)
Line 3: Line 3:
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).  
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).  


In the fourth-repeating version of the diatonic scale, each tone has a 4/3 perfect fourth above it. The scale has one major chord and two minor chords.  
In the fourth-repeating version of the diatonic scale, each tone has a perfect fourth above it. The scale has one major chord and two minor chords.  


[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]].
[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]].
==Notation==
==Notation==
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4 and a fourth has too few notes for a structure analogous to the major scale, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
{| class="wikitable"
{| class="wikitable"
|+Cents
|+Cents
! colspan="2" |Notation
!Notation
!Supersoft
!Supersoft
!Soft
!Soft
Line 20: Line 20:
|-
|-
!Fourth
!Fourth
!Seventh
!~11ed4/3
!~11ed4/3
!~8ed4/3
!~8ed4/3
Line 29: Line 28:
!~9ed4/3
!~9ed4/3
|-
|-
|Do#, Sol#
|F/C/G ut#
|Sol#
Do#, Sol#
 
د#,
 
ص#
|1\11, 46.154
|1\11, 46.154
|1\8, 63.158
|1\8, 63.158
Line 37: Line 40:
|3\12, 124.138
|3\12, 124.138
|2\7, 141.176
|2\7, 141.176
|3\9, 163.{{Overline|63}}
|3\9, 163.636
|-
|-
| Reb, Lab
| G/D/A reb
|Lab
Reb, Lab
 
رb, لb
|3\11, 138.462
|3\11, 138.462
|2\8, 126.316
|2\8, 126.316
Line 46: Line 51:
|2\12, 82.759
|2\12, 82.759
|1\7, 70.588
|1\7, 70.588
|1\9, 54.{{Overline|54}}
|1\9, 54.545
|-
|-
|'''Re, La'''
|'''G/D/A re'''
|'''La'''
'''Re, La'''
 
'''ر, ل'''
|'''4\11,''' '''184.615'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''3\8,''' '''189.474'''
Line 56: Line 63:
|'''5\12,''' '''206.897'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.{{Overline|18}}'''
|'''4\9,''' '''218.182'''
|-
|-
|Re#, La#
|G/D/A re#
|La#
Re#, La#
 
ر,# ل#
|5\11, 230.769
|5\11, 230.769
|4\8, 252.632
| rowspan="2" |4\8, 252.632
|7\13, 270.967
|7\13, 270.967
| rowspan="2" |'''3\5,''' '''300'''
|3\5, 300
| 8\12, 331.034
| 8\12, 331.034
|5\7, 352.941
|5\7, 352.941
|7\9, 381.{{Overline|81}}
|7\9, 381.818
|-
|-
|'''Mib, Sib'''
|A/E/B mibb
|'''Sib'''
Mibb, Sibb
 
مbb,تbb
|6\11, 276.923
|6\13, 232.258
|2\5, 200
|4\12, 165.517
|2\7, 141.176
|2\9, 109.091
|-
|'''A/E/B mib'''
'''Mib, Sib'''
 
'''مb,تb'''
|'''7\11,''' '''323.077'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''8\13,''' '''309.677'''
|'''3\5,''' '''300'''
|'''7\12,''' '''289.655'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.{{Overline|72}}'''
|'''5\9,''' '''272.727'''
|-
|-
|Mi, Si
|A/E/B mi
| Si
Mi, Si
 
م, ت
|8\11, 369.231
|8\11, 369.231
|6\8, 378.947
|6\8, 378.947
Line 85: Line 110:
|10\12, 413.793
|10\12, 413.793
|6\7, 423.529
|6\7, 423.529
|8\9, 436.{{Overline|36}}
|8\9, 436.364
|-
|-
|Mi#, Si#
|A/E/B mi#
|Si#
Mi#, Si#
 
م,#ت#
|9\11, 415.385
|9\11, 415.385
| rowspan="2" |7\8, 442.105
| rowspan="2" |7\8, 442.105
Line 97: Line 124:
|11\9, 600
|11\9, 600
|-
|-
|Dob, Solb
|F/C/G utb
| Dob
Dob, Solb
 
دb,
 
صb
|10\11, 461.538
|10\11, 461.538
|11\13, 425.806
|11\13, 425.806
Line 104: Line 135:
|9\12, 372.414
|9\12, 372.414
|5\7, 352.941
|5\7, 352.941
|6\9, 327.{{Overline|27}}
|6\9, 327.273
|-
|-
!Do, Sol
!F/C/G ut
!Do
Do, Sol
 
د, ص
!'''11\11,''' '''507.692'''
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''8\8,''' '''505.263'''
Line 114: Line 147:
!'''12\12,''' '''496.552'''
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.{{Overline|90}}'''
!'''9\9,''' '''490.909'''
|}
 
{| class="wikitable"
|+Cents
! colspan="2" |Notation
!Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
|-
|Do#, Sol#
! colspan="2" |Seventh
|Do#
!~11ed4/3
|12\11, 553.846
!~8ed4/3
|9\8, 568.421
!~13ed4/3
|15\13, 580.645
!~5ed4/3
| rowspan="2" |6\5, 600
!~12ed4/3
|15\12, 620.690
!~7ed4\3
|9\7, 635.294
!~9ed4/3
|12\9, 654.{{Overline|54}}
|-
|-
|Reb, Lab
!Mixolydian
|Reb
!Dorian
|14\11, 646.154
!
|10\8, 631.579
!
|16\13, 619.355
!
|14\12, 579.310
!
|8\7, 564.706
!
|10\9, 545.{{Overline|45}}
!
!
|-
|-
|'''Re, La'''
| F/C/G ut#
|'''Re'''
Sol#
|'''15\11,''' '''692.308'''
 
|'''11\8'''  '''694.737'''
ص#
|'''18\13,''' '''696.774'''
|G/D/A re#
|'''7\5,''' '''700'''
Re#
|'''17\12,''' '''703.448'''
 
|'''10\7,''' '''705.882'''
ر#
|'''13\9,''' '''709.{{Overline|09}}'''
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
| 3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|-
|Re#, La#
|G/D/A reb
|Re#
Lab
|16\11, 738.462
 
|12\8, 757.895
لb
|20\13, 774.294
|A/E/B mib
| rowspan="2" |'''8\5,''' '''800'''
Mib
|20\12, 827.586
 
|12\7, 847.059
مb
|16\9, 872.{{Overline|72}}
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|-
|'''Mib, Sib'''
|'''G/D/A re'''
|'''Mib'''
'''La'''
|'''18\11,''' '''830.769'''
 
|'''13\8,''' '''821.053'''
ل
|'''21\13,''' '''812.903'''
|'''A/E/B mi'''
|'''19\12,''' '''786.207'''
'''Mi'''
|'''11\7,''' '''776.471'''
 
|'''14\9,''' '''763.{{Overline|63}}'''
م
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|-
|Mi, Si
|G/D/A re#
|Mi
La#
|19\11, 876.923
 
|14\8, 884.211
ل#
|23\13, 890.323
| A/E/B mi#
|9\5, 900
Mi#
|22\12, 910.345
 
|13\7, 917.647
م#
|17\9, 927.{{Overline|27}}
|5\11, 230.769
| rowspan="2" |4\8, 252.632
| 7\13, 270.967
|3\5, 300
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|-
|Mi#, Si#
|A/E/B mibb
| Mi#
Sibb
|20\11, 923.077
 
| rowspan="2" |15\8, 947.378
تbb
|25\13, 967.742
|B/F/C fab
|10\5, 1000
Fab
|25\12, 1034.483
 
|15\7, 1058.824
فb
|20\9, 1090.{{Overline|90}}
|6\11, 276.923
|6\13, 232.258
|2\5, 200
|4\12, 165.517
|2\7, 141.176
|2\9, 109.091
|-
|-
|Dob, Solb
|'''A/E/B mib'''
|Solb
'''Sib'''
|21\11, 969.231
 
|24\13, 929.033
تb
|9\5, 900
|'''B/F/C fa'''
|21\12, 868.966
'''Fa'''
|11\7, 776.471
 
|15\9, 818.{{Overline|18}}
'''ف'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''3\5,''' '''300'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|A/E/B mi
Si
 
ت
|B/F/C fa#
Fa#
 
ف#
| 8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|-
!Do, Sol
|A/E/B mi#
!Sol
Si#
!22\11, 1015.385
 
!16\8, 1010.526
ت#
!26\13, 1006.452
|B/F/C fax
!10\5, 1000
Fax
!24\12, 993.103
 
!14\7, 988.235
فx
!18\9, 981.{{Overline|81}}
|9\11, 415.385
|}
| rowspan="2" |7\8, 442.105
{| class="wikitable"
|12\13, 464.516
! colspan="2" |Notation
|5\5, 500
!Supersoft
|13\12, 537.069
!Soft
|8\7, 564.705
!Semisoft
|11\9, 600
!Basic
!Semihard
!Hard
!Superhard
|-
|-
!Mahur
| B/F/C fab
!Bijou
Dob
!~11ed4/3
 
! ~8ed4/3
دb
!~13ed4/3
|C/G/D solb
!~5ed4/3
Solb
!~12ed4/3
 
!~7ed4\3
صb
!~9ed4/3
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
|-
|G#
!B/F/C fa
|0#, E#
Do
|1\11, 46.154
 
|1\8, 63.158
د
|2\13, 77.419
!C/G/D sol
| rowspan="2" |1\5, 100
Sol
|3\12, 124.138
 
|2\7, 141.176
ص
|3\9, 163.{{Overline|63}}
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|-
|Jf, Af
|B/F/C fa#
|1b, 1d
Do#
|3\11, 138.462
 
|2\8, 126.316
د#
| 3\13, 116.129
| C/G/D sol#
|2\12, 82.759
Sol#
|1\7, 70.588
 
|1\9, 54.{{Overline|54}}
ص#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
|9\7, 635.294
|12\9, 654.545
|-
|-
|'''J, A'''
|C/G/D solb
|'''1'''
Reb
|'''4\11,''' '''184.615'''
 
|'''3\8,''' '''189.474'''
رb
|'''5\13,''' '''193.548'''
|D/A/E lab
|'''2\5,''' '''200'''
Lab
|'''5\12,''' '''206.897'''
 
|'''3\7,''' '''211.765'''
لb
|'''4\9,''' '''218.{{Overline|18}}'''
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
|10\9, 545.455
|-
|-
|J#, A#
|'''C/G/D sol'''
|1#
'''Re'''
|5\11, 230.769
 
|4\8, 252.632
ر
|7\13, 270.968
|'''D/A/E la'''
| rowspan="2" |'''3\5,''' '''300'''
'''La'''
|8\12, 331.034
 
|5\7, 352.941
ل
|7\9, 381.{{Overline|81}}
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|-
|'''Af, Bf'''
|C/G/D sol#
|'''2b, 2d'''
Re#
|'''7\11,''' '''323.077'''
 
|'''5\8,''' '''315.789'''
د#
|'''8\13,''' '''309.677'''
|D/A/E la#
|'''7\12,''' '''289.655'''
La#
|'''4\7,''' '''282.353'''
 
|'''5\9,''' '''272.{{Overline|72}}'''
ل#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.294
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|-
|A, B
|'''D/A/E lab'''
|2
'''Mib'''
|8\11, 369.231
 
|6\8, 378.947
مb
|10\13, 387.097
|'''E/B/F síb'''
|4\5, 400
'''Sib'''
|10\12, 413.793
 
|6\7, 423.529
تb
|8\9, 436.{{Overline|36}}
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|-
|A#, B#
|D/A/E la
|2#
Mi
|9\11, 415.385
 
| rowspan="2" |7\8, 442.105
م
|12\13, 464.516
|E/B/F sí
|5\5, 500
Si
|13\12, 537.069
 
|8\7, 564.705
ت
|11\9, 600
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
|17\9, 927.727
|-
|-
|Bb, Cf
|D/A/E la#
|3b, 3d
Mi#
|10\11, 461.538
 
|11\13, 425.806
م#
| 4\5, 400
|E/B/F sí#
|9\12, 372.414
Si#
|5\7, 352.941
 
|6\9, 327.{{Overline|27}}
ت#
|20\11, 923.077
| rowspan="2" |15\8, 947.378
|25\13, 967.742
|10\5, 1000
|25\12, 1034.483
|15\7, 1058.824
|20\9, 1090.909
|-
|-
!B, C
|F/C/G utb
!3
Solb
!'''11\11,''' '''507.692'''
 
!'''8\8,''' '''505.263'''
صb
!'''13\13,''' '''503.226'''
|G/D/A reb
!5\5, 500
Reb
!'''12\12,''' '''496.552'''
 
!'''7\7,''' '''494.118'''
رb
!'''9\9,''' '''490.{{Overline|90}}'''
|21\11, 969.231
|24\13, 929.033
|9\5, 900
|21\12, 868.966
|11\7, 776.471
|15\9, 818.182
|-
|-
|B#, C#
!F/C/G ut
|3#
Sol
|12\11, 553.846
 
|9\8, 568.421
ص
|15\13, 580.645
!G/D/A re
| rowspan="2" |6\5, 600
Re
|15\12, 620.690
 
|9\7, 635.294
ر
|12\9, 654.{{Overline|54}}
!22\11, 1015.385
! 16\8, 1010.526
! 26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
!18\9, 981.818
|}
{| class="wikitable"
!Notation
!Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
|-
|Cf, Qf
!Mahur
|4b, 4d
!~11ed4/3
|14\11, 646.154
!~8ed4/3
|10\8, 631.579
!~13ed4/3
|16\13, 619.355
!~5ed4/3
|14\12, 579.310
!~12ed4/3
|8\7, 564.706
!~7ed4\3
|10\9, 545.{{Overline|45}}
! ~9ed4/3
|-
|-
|'''C, Q'''
|G#
|'''4'''
|1\11, 46.154
|'''15\11,''' '''692.308'''
|1\8, 63.158
|'''11\8'''  '''694.737'''
|2\13, 77.419
|'''18\13,''' '''696.774'''
| rowspan="2" |1\5, 100
|'''7\5,''' '''700'''
|3\12, 124.138
|'''17\12,''' '''703.448'''
|2\7, 141.176
|'''10\7,''' '''705.882'''
|3\9, 163.636
|'''13\9,''' '''709.{{Overline|09}}'''
|-
|-
|C#, Q#
|Jf, Af
|4#
|3\11, 138.462
|16\11, 738.462
|2\8, 126.316
|12\8, 757.895
|3\13, 116.129
| 20\13, 774.194
|2\12, 82.759
| rowspan="2" |'''8\5,''' '''800'''
|1\7, 70.588
|20\12, 827.586
|1\9, 54.545
|12\7, 847.059
|16\9, 872.{{Overline|72}}
|-
|-
|'''Qf, Df'''
|'''J, A'''
|'''5b, 5d'''
|'''4\11,''' '''184.615'''
|'''18\11,''' '''830.769'''
|'''3\8,''' '''189.474'''
|'''13\8,''' '''821.053'''
|'''5\13,''' '''193.548'''
|'''21\13,''' '''812.903'''
|'''2\5,''' '''200'''
|'''19\12,''' '''786.207'''
|'''5\12,''' '''206.897'''
|'''11\7,''' '''776.471'''
|'''3\7,''' '''211.765'''
|'''14\9,''' '''763.{{Overline|63}}'''
|'''4\9,''' '''218.182'''
|-
|-
|Q, D
| J#, A#
|5
|5\11, 230.769
|19\11, 876.923
|4\8, 252.632
|14\8, 884.211
|7\13, 270.968
|23\13, 890.323
| rowspan="2" |'''3\5,''' '''300'''
|9\5, 900
|8\12, 331.034
|22\12, 910.345
|5\7, 352.941
|13\7, 917.647
|7\9, 381.818
|17\9, 927.{{Overline|27}}
|-
|-
|Q#, D#
|'''Af, Bf'''
|5#
|'''7\11,''' '''323.077'''
|20\11, 923.077
|'''5\8,''' '''315.789'''
| rowspan="2" |15\8, 947.368
|'''8\13,''' '''309.677'''
|25\13, 967.742
|'''7\12,''' '''289.655'''
|10\5, 1000
|'''4\7,''' '''282.353'''
|25\12, 1034.483
|'''5\9,''' '''272.727'''
|15\7, 1058.824
|20\9, 1090.{{Overline|90}}
|-
|-
|Df, Sf
|A, B
|6b, 6d
|8\11, 369.231
|21\11, 969.231
|6\8, 378.947
|24\13, 929.033
|10\13, 387.097
|9\5, 900
|4\5, 400
|21\12, 868.966
|10\12, 413.793
|11\7, 776.471
|6\7, 423.529
|15\9, 818.{{Overline|18}}
|8\9, 436.364
|-
|-
!D, S
|A#, B#
!6
|9\11, 415.385
!22\11, 1015.385
| rowspan="2" |7\8, 442.105
!16\8, 1010.526
|12\13, 464.516
!26\13, 1006.452
|5\5, 500
!10\5, 1000
|13\12, 537.069
!24\12, 993.103
|8\7, 564.705
! 14\7, 988.235
|11\9, 600
!18\9, 981.{{Overline|81}}
|-
|-
|D#, S#
|Bb, Cf
|6#
|10\11, 461.538
|23\11, 1061.538
|11\13, 425.806
|17\8, 1073.684
|4\5, 400
|28\13, 1083.871
|9\12, 372.414
| rowspan="2" |11\5, 1100
|5\7, 352.941
|27\12, 1117.241
|6\9, 327.273
|16\7, 1129.412
|21\9, 1145.{{Overline|45}}
|-
|-
|Ef
!B, C
|7b, 7d
!'''11\11,''' '''507.692'''
| 25\11, 1153.846
!'''8\8,''' '''505.263'''
| 18\8, 1136.842
!'''13\13,''' '''503.226'''
|29\13, 1122.581
!5\5, 500
|26\12, 1075.862
!'''12\12,''' '''496.552'''
|15\7, 1058.824
!'''7\7,''' '''494.118'''
|19\9, 1036.{{Overline|36}}
!'''9\9,''' '''490.909'''
|-
|-
|'''E'''
|B#, C#
|'''7'''
|12\11, 553.846
|'''26\11,''' '''1200'''
|9\8, 568.421
|'''19\8,''' '''1200'''
|15\13, 580.645
|'''31\13,''' '''1200'''
| rowspan="2" |6\5, 600
|'''12\5,''' '''1200'''
|15\12, 620.690
|'''29\12,''' '''1200'''
| 9\7, 635.294
|'''17\7,''' '''1200'''
| 12\9, 654.545
|'''22\9,''' '''1200'''
|-
|-
|E#
|Cf, Qf
|7#
|14\11, 646.154
|27\11, 1246.154
|10\8, 631.579
|20\8, 1263.158
|16\13, 619.355
|33\13, 1277.419
|14\12, 579.310
| rowspan="2" |'''13\5,''' '''1300'''
|8\7, 564.706
|32\12, 1324.138
| 10\9, 545.455
|19\7, 1341.176
|25\9, 1363.{{Overline|63}}
|-
|-
|'''Ff'''
|'''C, Q'''
|'''8b, Gd'''
|'''15\11,''' '''692.308'''
|'''29\11,''' '''1338.462'''
|'''11\8''' '''694.737'''
|'''21\8,''' '''1326.316'''
|'''18\13,''' '''696.774'''
|'''34\13,''' '''1316.129'''
|'''7\5,''' '''700'''
|'''31\12,''' '''1282.759'''
|'''17\12,''' '''703.448'''
|'''18\7,''' '''1270.588'''
|'''10\7,''' '''705.882'''
|'''23\9,''' '''1254.{{Overline|54}}'''
|'''13\9,''' '''709.091'''
|-
|-
|F
|C#, Q#
|8, G
|16\11, 738.462
|30\11, 1384.615
|12\8, 757.895
|22\8, 1389.474
|20\13, 774.194
|36\13, 1393.548
| rowspan="2" |'''8\5,''' '''800'''
|14\5, 1400
|20\12, 827.586
|34\12, 1406.897
|12\7, 847.059
|20\7, 1411.765
|16\9, 872.727
|26\9, 1418.{{Overline|18}}
|-
|-
|F#
|'''Qf, Df'''
|8#, G#
|'''18\11,''' '''830.769'''
|31\11, 1430.769
|'''13\8,''' '''821.053'''
| rowspan="2" |23\8, 1452.632
|'''21\13,''' '''812.903'''
|38\13, 1470.968
|'''19\12,''' '''786.207'''
|15\5, 1500
|'''11\7,''' '''776.471'''
|37\12, 1531.034
|'''14\9,''' '''763.636'''
|22\7, 1552.941
|29\9, 1581.{{Overline|81}}
|-
|-
|Gf
|Q, D
|9b, Ad
|19\11, 876.923
|32\11, 1476.923
|14\8, 884.211
|37\13, 1432.258
|23\13, 890.323
|14\5, 1400
|9\5, 900
|33\12, 1365.517
|22\12, 910.345
|19\7, 1341.176
|13\7, 917.647
|24\9, 1309.{{Overline|09}}
| 17\9, 927.727
|-
|-
!G
|Q#, D#
!'''9, A'''
|20\11, 923.077
!33\11, 1523.077
| rowspan="2" |15\8, 947.368
!24\8, 1515.789
|25\13, 967.742
!39\13, 1509.677
| 10\5, 1000
!15\5, 1500
|25\12, 1034.483
!36\12, 1489.655
| 15\7, 1058.824
!21\7, 1482.353
| 20\9, 1090.909
!27\9, 1472.{{Overline|72}}
|-
|-
|G#
|Df, Sf
|9#, A#
| 21\11, 969.231
|34\11, 1569.231
|24\13, 929.033
| 25\8, 1578.947
|9\5, 900
|41\13, 1587.097
|21\12, 868.966
| rowspan="2" |16\5, 1600
|11\7, 776.471
|39\12, 1613.793
|15\9, 818.182
|23\7, 1623.529
|30\9, 1636.{{Overline|36}}
|-
|-
|Jf, Af
!D, S
|Xb, Bd
!22\11, 1015.385
|36\11, 1661.538
!16\8, 1010.526
|26\8, 1642.105
!26\13, 1006.452
|42\13, 1625.806
!10\5, 1000
|38\12, 1572.034
!24\12, 993.103
|22\7, 1552.941
!14\7, 988.235
|28\9, 1527.{{Overline|27}}
!18\9, 981.818
|-
|-
|'''J, A'''
|D#, S#
|'''X, B'''
|23\11, 1061.538
|'''37\11,''' '''1707.692'''
|17\8, 1073.684
|'''27\8,''' '''1705.263'''
|28\13, 1083.871
|'''44\13,''' '''1703.226'''
| rowspan="2" |11\5, 1100
|'''17\5,''' '''1700'''
|27\12, 1117.241
|'''41\12,''' '''1696.552'''
|16\7, 1129.412
|'''24\7,''' '''1694.118'''
|21\9, 1145.455
|'''31\9,''' '''1690.{{Overline|90}}'''
|-
|-
|J#, A#
|Ef
|X#, B#
|25\11, 1153.846
|38\11, 1753.846
|18\8, 1136.842
|28\8, 1768.421
|29\13, 1122.581
|46\13, 1780.645
|26\12, 1075.862
| rowspan="2" |'''18\5,''' '''1800'''
|15\7, 1058.824
|44\12, 1820.690
|19\9, 1036.364
|26\7, 1835.294
|34\9, 1854.{{Overline|54}}
|-
|-
|'''Af, Bf'''
|'''E'''
|'''Eb, Dd'''
|'''26\11,''' '''1200'''
|'''40\11,''' '''1846.154'''
|'''19\8,''' '''1200'''
|'''29\8,''' '''1831.579'''
|'''31\13,''' '''1200'''
|'''47\13,''' '''1819.355'''
|'''12\5,''' '''1200'''
|'''43\12,''' '''1779.310'''
|'''29\12,''' '''1200'''
|'''25\7,''' '''1764.706'''
|'''17\7,''' '''1200'''
|'''32\9,''' '''1745.{{Overline|45}}'''
|'''22\9,''' '''1200'''
|-
|-
|A, B
|E#
|E, D
|27\11, 1246.154
|41\11, 1892.308
|20\8, 1263.158
|30\8, 1894.737
|33\13, 1277.419
|49\13, 1896.774
| rowspan="2" |'''13\5,''' '''1300'''
|19\5, 1900
|32\12, 1324.138
|46\12, 1903.448
|19\7, 1341.176
|27\7, 1905.882
|25\9, 1363.636
|35\9, 1909.{{Overline|09}}
|-
|-
|A#, B#
|'''Ff'''
|E#, D#
|'''29\11,''' '''1338.462'''
|42\11, 1938.462
|'''21\8,''' '''1326.316'''
| rowspan="2" |31\8, 1957.895
|'''34\13,''' '''1316.129'''
|51\13, 1974.194
|'''31\12,''' '''1282.759'''
|20\5, 2000
|'''18\7,''' '''1270.588'''
|49\12, 2027.586
|'''23\9,''' '''1254.545'''
|29\7, 2047.059
|38\9, 2072.{{Overline|72}}
|-
|-
|Bb, Cf
|F
|0b, Ed
|30\11, 1384.615
| 43\11, 1984.615
|22\8, 1389.474
|50\13, 1935.484
|36\13, 1393.548
|19\5, 1900
|14\5, 1400
|45\12, 1862.069
|34\12, 1406.897
|26\7, 1835.294
|20\7, 1411.765
|33\9, 1800
| 26\9, 1418.182
|-
|-
!B, C
|F#
! 0, E
|31\11, 1430.769
!44\11, 2030.769
| rowspan="2" |23\8, 1452.632
!32\8, 2021.053
|38\13, 1470.968
!52\13, 2012.903
|15\5, 1500
!20\5, 2000
|37\12, 1531.034
!48\12, 1986.207
|22\7, 1552.941
!28\7, 1976.471
| 29\9, 1581.818
!36\9, 1963.{{Overline|63}}
|}
{| class="wikitable"
! colspan="2" |Notation
!Supersoft
!Soft
!Semisoft
! Basic
!Semihard
!Hard
!Superhard
|-
|-
!Hyperionic
|Gf
!Subsextal
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!G
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|}
 
{| class="wikitable"
!Notation
! Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Bijou
!~11ed4/3
!~11ed4/3
!~8ed4/3
! ~8ed4/3
!~13ed4/3
!~13ed4/3
!~5ed4/3
!~5ed4/3
!~12ed4/3
!~12ed4/3
! ~7ed4\3
!~7ed4\3
!~9ed4/3
!~9ed4/3
|-
|-
|1#
|0#, E#
|0#
|1\11, 46.154
|1\11, 46.154
|1\8, 63.158
|1\8, 63.158
Line 599: Line 758:
|3\12, 124.138
|3\12, 124.138
|2\7, 141.176
|2\7, 141.176
|3\9, 163.{{Overline|63}}
| 3\9, 163.636
|-
|-
|2f
|1b, 1d
|1f
|3\11, 138.462
| 3\11, 138.462
|2\8, 126.316
|2\8, 126.316
|3\13, 116.129
|3\13, 116.129
|2\12, 82.759
| 2\12, 82.759
|1\7, 70.588
|1\7, 70.588
|1\9, 54.{{Overline|54}}
|1\9, 54.545
|-
|-
|'''2'''
|'''1'''
|'''1'''
|'''4\11,''' '''184.615'''
|'''4\11,''' '''184.615'''
Line 618: Line 775:
|'''5\12,''' '''206.897'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.{{Overline|18}}'''
|'''4\9,''' '''218.182'''
|-
|-
|2#
|1#
|1#
| 5\11, 230.769
|5\11, 230.769
| 4\8, 252.632
|4\8, 252.632
|7\13, 270.967
|7\13, 270.968
| rowspan="2" |'''3\5,''' '''300'''
| rowspan="2" |'''3\5,''' '''300'''
|8\12, 331.034
|8\12, 331.034
|5\7, 352.941
|5\7, 352.941
| 7\9, 381.{{Overline|81}}
|7\9, 381.818
|-
|-
|'''3f'''
|'''2b, 2d'''
|2f
|'''7\11,''' '''323.077'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''5\8,''' '''315.789'''
Line 637: Line 792:
|'''7\12,''' '''289.655'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.{{Overline|72}}'''
|'''5\9,''' '''272.727'''
|-
|-
|3
|2
|'''2'''
|8\11, 369.231
| 8\11, 369.231
|6\8, 378.947
|6\8, 378.947
|10\13, 387.098
|10\13, 387.097
|4\5, 400
|4\5, 400
|10\12, 413.793
|10\12, 413.793
|6\7, 423.529
|6\7, 423.529
|8\9, 436.{{Overline|36}}
|8\9, 436.364
|-
|-
|3#
|2#
| 2#
|9\11, 415.385
| 9\11, 415.385
| rowspan="2" |7\8, 442.105
| rowspan="2" | 7\8, 442.105
|12\13, 464.516
| 12\13, 464.516
|5\5, 500
|5\5, 500
|13\12, 537.069
|13\12, 537.069
Line 659: Line 812:
|11\9, 600
|11\9, 600
|-
|-
|4f
|3b, 3d
|'''3f'''
|10\11, 461.538
|10\11, 461.538
|11\13, 425.806
|11\13, 425.806
|4\5, 400
|4\5, 400
|9\12, 372.414
|9\12, 372.414
| 5\7, 352.941
|5\7, 352.941
|6\9, 327.{{Overline|27}}
|6\9, 327.273
|-
|-
!4
!3
!3
!'''11\11,''' '''507.692'''
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!'''13\13,''' '''503.226'''
! 5\5, 500
!5\5, 500
!'''12\12,''' '''496.552'''
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.{{Overline|90}}'''
!'''9\9,''' '''490.909'''
|-
|-
|4#
|3#
| 3#
|12\11, 553.846
|12\11, 553.846
| 9\8, 568.421
|9\8, 568.421
|15\13, 580.645
|15\13, 580.645
| rowspan="2" | 6\5, 600
| rowspan="2" |6\5, 600
| 15\12, 620.690
|15\12, 620.690
|9\7, 635.294
|9\7, 635.294
|12\9, 654.{{Overline|54}}
|12\9, 654.545
|-
|-
|5f
|4b, 4d
|4f
|14\11, 646.154
|14\11, 646.154
|10\8, 631.579
|10\8, 631.579
Line 695: Line 844:
|14\12, 579.310
|14\12, 579.310
|8\7, 564.706
|8\7, 564.706
|10\9, 545.{{Overline|45}}
|10\9, 545.455
|-
|-
|'''5'''
|'''4'''
|'''4'''
|'''15\11,''' '''692.308'''
|'''15\11,''' '''692.308'''
Line 705: Line 853:
|'''17\12,''' '''703.448'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.{{Overline|09}}'''
|'''13\9,''' '''709.091'''
|-
|-
|5#
|4#
|4#
|16\11, 738.462
|16\11, 738.462
Line 714: Line 861:
| rowspan="2" |'''8\5,''' '''800'''
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|20\12, 827.586
| 12\7, 847.059
|12\7, 847.059
|16\9, 872.{{Overline|72}}
|16\9, 872.727
|-
|-
|'''6f'''
|'''5b, 5d'''
|5f
|'''18\11,''' '''830.769'''
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''13\8,''' '''821.053'''
Line 724: Line 870:
|'''19\12,''' '''786.207'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.{{Overline|63}}'''
|'''14\9,''' '''763.636'''
|-
|-
|6
|5
|'''5'''
|19\11, 876.923
|19\11, 876.923
|14\8, 884.211
|14\8, 884.211
Line 734: Line 879:
|22\12, 910.345
|22\12, 910.345
|13\7, 917.647
|13\7, 917.647
|17\9, 927.{{Overline|27}}
|17\9, 927.727
|-
|-
|6#
|5#
|5#
|20\11, 923.077
|20\11, 923.077
| rowspan="2" | 15\8, 947.368
| rowspan="2" |15\8, 947.368
|25\13, 967.742
|25\13, 967.742
|10\5, 1000
|10\5, 1000
|25\12, 1034.483
|25\12, 1034.483
|15\7, 1058.824
|15\7, 1058.824
|20\9, 1090.{{Overline|90}}
|20\9, 1090.909
|-
|-
|7f
|6b, 6d
|'''6f'''
|21\11, 969.231
|21\11, 969.231
|24\13, 929.032
|24\13, 929.033
|9\5, 900
| 9\5, 900
|21\12, 868.966
|21\12, 868.966
|11\7, 776.471
|11\7, 776.471
|15\9, 818.{{Overline|18}}
|15\9, 818.182
|-
|-
!7
!6
!6
!22\11, 1015.385
!22\11, 1015.385
Line 763: Line 905:
!24\12, 993.103
!24\12, 993.103
!14\7, 988.235
!14\7, 988.235
!18\9, 981.{{Overline|81}}
!18\9, 981.818
|-
|-
|7#
|6#
|6#
|23\11, 1061.538
|23\11, 1061.538
Line 773: Line 914:
|27\12, 1117.241
|27\12, 1117.241
|16\7, 1129.412
|16\7, 1129.412
|21\9, 1145.{{Overline|45}}
|21\9, 1145.455
|-
|-
|8f
|7b, 7d
| 7f
| 25\11, 1153.846
|25\11, 1153.846
|18\8, 1136.842
|18\8, 1136.842
|29\13, 1122.581
|29\13, 1122.581
| 26\12, 1075.862
|26\12, 1075.862
|15\7, 1058.824
|15\7, 1058.824
|19\9, 1036.{{Overline|36}}
|19\9, 1036.364
|-
|-
|'''8'''
|'''7'''
|7
|'''26\11,''' '''1200'''
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''19\8,''' '''1200'''
Line 794: Line 933:
|'''22\9,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|-
|8#
|7#
|7#
|27\11, 1246.154
|27\11, 1246.154
Line 802: Line 940:
|32\12, 1324.138
|32\12, 1324.138
|19\7, 1341.176
|19\7, 1341.176
|25\9, 1363.{{Overline|63}}
|25\9, 1363.636
|-
|-
|'''9f'''
|'''8b, Gd'''
|8f
|'''29\11,''' '''1338.462'''
|'''29\11,''' '''1338.462'''
|'''21\8,''' '''1326.316'''
|'''21\8,''' '''1326.316'''
Line 811: Line 948:
|'''31\12,''' '''1282.759'''
|'''31\12,''' '''1282.759'''
|'''18\7,''' '''1270.588'''
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.{{Overline|54}}'''
|'''23\9,''' '''1254.545'''
|-
|-
|9
|8, G
|'''8'''
|30\11, 1384.615
|30\11, 1384.615
|22\8, 1389.474
|22\8, 1389.474
Line 821: Line 957:
|34\12, 1406.897
|34\12, 1406.897
|20\7, 1411.765
|20\7, 1411.765
|26\9, 1418.{{Overline|18}}
|26\9, 1418.182
|-
|-
|9#
|8#, G#
|8#
|31\11, 1430.769
| 31\11, 1430.769
| rowspan="2" |23\8, 1452.632
| rowspan="2" | 23\8, 1452.632
|38\13, 1470.968
|38\13, 1470.968
|15\5, 1500
|15\5, 1500
|37\12, 1531.034
|37\12, 1531.034
|22\7, 1552.941
|22\7, 1552.941
|29\9, 1581.{{Overline|81}}
| 29\9, 1581.818
|-
|-
|Af
|9b, Ad
|9f
|32\11, 1476.923
|32\11, 1476.923
| 37\13, 1432.258
|37\13, 1432.258
|14\5, 1400
|14\5, 1400
|33\12, 1365.517
|33\12, 1365.517
|19\7, 1341.176
|19\7, 1341.176
|24\9, 1309.{{Overline|09}}
|24\9, 1309.091
|-
|-
!A
!'''9, A'''
!9
!33\11, 1523.077
!33\11, 1523.077
!24\8, 1515.789
!24\8, 1515.789
Line 850: Line 983:
!36\12, 1489.655
!36\12, 1489.655
!21\7, 1482.353
!21\7, 1482.353
!27\9, 1472.{{Overline|72}}
!27\9, 1472.727
|-
|-
|A#
|9#, A#
|9#
|34\11, 1569.231
|34\11, 1569.231
|25\8, 1578.947
| 25\8, 1578.947
|41\13, 1587.097
|41\13, 1587.097
| rowspan="2" |16\5, 1600
| rowspan="2" |16\5, 1600
|39\12, 1613.793
|39\12, 1613.793
|23\7, 1623.529
|23\7, 1623.529
|30\9, 1636.{{Overline|36}}
|30\9, 1636.364
|-
|-
|Bf
|Xb, Bd
|Xb
|36\11, 1661.538
|36\11, 1661.538
|26\8, 1642.105
|26\8, 1642.105
|42\13, 1625.806
|42\13, 1625.806
|38\12, 1572.034
|38\12, 1572.034
|22\7, 1552.941
| 22\7, 1552.941
|28\9, 1527.{{Overline|27}}
|28\9, 1527.{{Overline|27}}
|-
|-
|'''B'''
|'''X, B'''
|'''X'''
|'''37\11,''' '''1707.692'''
|'''37\11,''' '''1707.692'''
|'''27\8,''' '''1705.263'''
|'''27\8,''' '''1705.263'''
Line 879: Line 1,009:
|'''41\12,''' '''1696.552'''
|'''41\12,''' '''1696.552'''
|'''24\7,''' '''1694.118'''
|'''24\7,''' '''1694.118'''
|'''31\9,''' '''1690.{{Overline|90}}'''
|'''31\9,''' '''1690.909'''
|-
|-
|B#
|X#, B#
|X#
|38\11, 1753.846
|38\11, 1753.846
|28\8, 1768.421
|28\8, 1768.421
Line 889: Line 1,018:
|44\12, 1820.690
|44\12, 1820.690
|26\7, 1835.294
|26\7, 1835.294
|34\9, 1854.{{Overline|54}}
|34\9, 1854.545
|-
|-
|'''Cf'''
|'''Eb, Dd'''
|'''ɛf'''
|'''40\11,''' '''1846.154'''
|'''40\11,''' '''1846.154'''
|'''29\8,''' '''1831.579'''
|'''29\8,''' '''1831.579'''
Line 898: Line 1,026:
|'''43\12,''' '''1779.310'''
|'''43\12,''' '''1779.310'''
|'''25\7,''' '''1764.706'''
|'''25\7,''' '''1764.706'''
|'''32\9,''' '''1745.{{Overline|45}}'''
|'''32\9,''' '''1745.455'''
|-
|-
|C
|E, D
|41\11, 1892.308
|41\11, 1892.308
|30\8, 1894.737
|30\8, 1894.737
Line 908: Line 1,035:
|46\12, 1903.448
|46\12, 1903.448
|27\7, 1905.882
|27\7, 1905.882
|35\9, 1909.{{Overline|09}}
|35\9, 1909.090
|-
|-
|C#
|E#, D#
#
|42\11, 1938.462
|42\11, 1938.462
| rowspan="2" |31\8, 1957.895
| rowspan="2" |31\8, 1957.895
Line 918: Line 1,044:
|49\12, 2027.586
|49\12, 2027.586
|29\7, 2047.059
|29\7, 2047.059
|38\9, 2072.{{Overline|72}}
|38\9, 2072.727
|-
|-
|Df
|0b, Ed
|Af
|43\11, 1984.615
|43\11, 1984.615
|50\13, 1935.484
|50\13, 1935.484
Line 929: Line 1,054:
|33\9, 1800
|33\9, 1800
|-
|-
!D
!0, E
!A
!44\11, 2030.769
!44\11, 2030.769
!32\8, 2021.053
!32\8, 2021.053
!52\13, 2012.903
!52\13, 2012.903
Line 937: Line 1,061:
!48\12, 1986.207
!48\12, 1986.207
!28\7, 1976.471
!28\7, 1976.471
!36\9, 1963.{{Overline|63}}
!36\9, 1963.636
|}
{| class="wikitable"
! Notation
!Supersoft
! Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
|-
|D#
!Hyperionic
|A#
!~11ed4/3
|45\11, 2076.923
!~8ed4/3
|33\8, 2084.211
!~13ed4/3
| 54\13, 2090.323
!~5ed4/3
| rowspan="2" |21\5, 2100
!~12ed4/3
|51\12, 2110.345
!~7ed4\3
|30\7, 2117.647
!~9ed4/3
|39\9, 2127.{{Overline|27}}
|-
|-
|Ef
|1#
|Bf
|1\11, 46.154
|47\11, 2169.231
|1\8, 63.158
|34\8, 2147.368
|2\13, 77.419
|55\13, 2129.032
| rowspan="2" |1\5, 100
|50\12, 2068.966
|3\12, 124.138
|29\7, 2047.059
|2\7, 141.176
|37\9, 2018.{{Overline|18}}
|3\9, 163.636
|-
|-
|'''E'''
|2f
|'''B'''
|3\11, 138.462
|'''48\11,''' '''2215.385'''
|2\8, 126.316
|'''35\8,''' '''2210.526'''
|3\13, 116.129
|'''57\13,''' '''2206.452'''
|2\12, 82.759
|'''22\5,''' '''2200'''
| 1\7, 70.588
|'''53\12,''' '''2193.103'''
|1\9, 54.545
|'''31\7,''' '''2188.235'''
|'''40\9,''' '''2181.{{Overline|81}}'''
|-
|-
|E#
|'''2'''
|B#
|'''4\11,''' '''184.615'''
|49\11, 2261.538
|'''3\8,''' '''189.474'''
|36\8, 2273.684
|'''5\13,''' '''193.548'''
|59\13, 2283.871
|'''2\5,''' '''200'''
| rowspan="2" |'''23\5,''' '''2300'''
|'''5\12,''' '''206.897'''
|56\12, 2317.241
|'''3\7,''' '''211.765'''
|33\7, 2329.412
|'''4\9,''' '''218.182'''
|43\9, 2345.{{Overline|45}}
|-
|-
|'''Ff'''
|2#
|'''Cf'''
| 5\11, 230.769
|'''51\11,''' '''2353.846'''
|4\8, 252.632
|'''37\8,''' '''2336.842'''
|7\13, 270.967
|'''61\13,''' '''2322.581'''
| rowspan="2" |'''3\5,''' '''300'''
|'''55\12,''' '''2275.864'''
| 8\12, 331.034
|'''32\7,''' '''2258.824'''
|5\7, 352.941
|'''41\9,''' '''2236.{{Overline|36}}'''
|7\9, 381.818
|-
|-
|F
|'''3f'''
|C
|'''7\11,''' '''323.077'''
| 52\11, 2400
|'''5\8,''' '''315.789'''
|38\8, 2400
|'''8\13,''' '''309.677'''
|62\13, 2400
|'''7\12,''' '''289.655'''
|24\5, 2400
|'''4\7,''' '''282.353'''
| 58\12, 2400
|'''5\9,''' '''272.727'''
|34\7, 2400
| 44\9, 2400
|-
|-
|F#
|3
|C#
|8\11, 369.231
|53\11, 2446.154
|6\8, 378.947
| rowspan="2" |39\8, 2463.158
|10\13, 387.098
|64\13, 2477.419
|4\5, 400
|25\5, 2500
|10\12, 413.793
|61\12, 2524.138
|6\7, 423.529
|36\7, 2541.176
|8\9, 436.364
|47/9, 2563.{{Overline|63}}
|-
|-
|1f
|3#
|Df
|9\11, 415.385
|54\11, 2492.308
| rowspan="2" |7\8, 442.105
|63\13, 2438.710
|12\13, 464.516
|24\5, 2400
|5\5, 500
|57\12, 2358.621
|13\12, 537.069
|33\7, 2329.412
|8\7, 564.705
|42\9, 2390.{{Overline|90}}
|11\9, 600
|-
|-
! 1
|4f
!D
|10\11, 461.538
!55\11, 2538.462
|11\13, 425.806
!40\8, 2526.316
|4\5, 400
! 65\13, 2516.129
|9\12, 372.414
!25\5, 2500
|5\7, 352.941
!60\12, 2482.759
|6\9, 327.273
!35\7, 2470.588
!45\9, 2454.{{Overline|54}}
|-
|-
|1#
!4
|D#
!'''11\11,''' '''507.692'''
|56\11, 2584.615
!'''8\8,''' '''505.263'''
|41\8, 2589.474
!'''13\13,''' '''503.226'''
|67\13, 2593.548
!5\5, 500
| rowspan="2" |26\5, 2600
!'''12\12,''' '''496.552'''
|63\12, 2606.897
!'''7\7,''' '''494.118'''
|37\7, 2611.765
!'''9\9,''' '''490.909'''
|48\9, 2618.{{Overline|18}}
|-
|-
|2f
|4#
|Ef
|12\11, 553.846
|58\11, 2676.923
|9\8, 568.421
| 42\8, 2652.632
|15\13, 580.645
|69\13, 2670.968
| rowspan="2" |6\5, 600
|62\12, 2565.517
|15\12, 620.690
|36\7, 2541.176
|9\7, 635.294
|46\9, 2509.{{Overline|09}}
|12\9, 654.545
|-
|-
|'''2'''
|5f
|'''E'''
|14\11, 646.154
|'''59\11,''' '''2723.077'''
|10\8, 631.579
|'''43\8,''' '''2715.789'''
|16\13, 619.355
|'''70\13,''' '''2709.677'''
|14\12, 579.310
|'''27\5,''' '''2700'''
|8\7, 564.706
|'''65\12,''' '''2689.655'''
|10\9, 545.455
|'''38\7,''' '''2682.353'''
|'''49\9,''' '''2672.{{Overline|72}}'''
|-
|-
|2#
|'''5'''
|E#
|'''15\11,''' '''692.308'''
|60\11, 2769.231
|'''11\8'''  '''694.737'''
|44\8, 2778.947
|'''18\13,''' '''696.774'''
|72\13, 2787.097
|'''7\5,''' '''700'''
| rowspan="2" |'''28\5,''' '''2800'''
|'''17\12,''' '''703.448'''
|68\12, 2813.793
|'''10\7,''' '''705.882'''
|40\7, 2823.529
|'''13\9,''' '''709.091'''
|52\9, 2836.{{Overline|36}}
|-
|-
|'''3f'''
|5#
|'''Ff'''
|16\11, 738.462
|'''62\11,''' '''2861.538'''
|12\8, 757.895
|'''45\8,''' '''2842.105'''
|20\13, 774.194
|'''73\13,''' '''2825.806'''
| rowspan="2" |'''8\5,''' '''800'''
|'''67\12,''' '''2772.034'''
|20\12, 827.586
|'''39\7,''' '''2752.941'''
|12\7, 847.059
|'''50\9,''' '''2727.{{Overline|27}}'''
|16\9, 872.727
|-
|-
| 3
|'''6f'''
|F
|'''18\11,''' '''830.769'''
|63\11, 2907.692
|'''13\8,''' '''821.053'''
|46\8, 2905.263
|'''21\13,''' '''812.903'''
|75\13, 2903.226
|'''19\12,''' '''786.207'''
|29\5, 2900
|'''11\7,''' '''776.471'''
|70\12, 2896.552
|'''14\9,''' '''763.636'''
|41\7, 2894.118
|53\9, 2890.{{Overline|90}}
|-
|-
|3#
|6
|F#
|19\11, 876.923
|64\11, 2953.846
|14\8, 884.211
| rowspan="2" |47\8, 2968.421
|23\13, 890.323
|77\13, 2980.645
|9\5, 900
|30\5, 3000
|22\12, 910.345
|73\12, 3020.690
|13\7, 917.647
|43\7, 3035.294
|17\9, 927.727
|55\9, 3000
|-
|6#
|20\11, 923.077
| rowspan="2" |15\8, 947.368
|25\13, 967.742
|10\5, 1000
| 25\12, 1034.483
|15\7, 1058.824
|20\9, 1090.909
|-
|-
|4f
|7f
|0f
|21\11, 969.231
|65\11, 3000
|24\13, 929.032
|76\13, 2941.935
|9\5, 900
|29\5, 2900
|21\12, 868.966
|69\29, 2855.172
| 11\7, 776.471
|40\7, 2823.529
|15\9, 818.182
|52\9, 2836.{{Overline|36}}
|-
|-
!4
!7
!0
!22\11, 1015.385
!66\11, 3046.154
!16\8, 1010.526
!48\8, 30'''31.579'''
!26\13, 1006.452
!78\13, 30'''19.355'''
!10\5, 1000
!30\5, 3000
!24\12, 993.103
!72\12, 29'''79.310'''
!14\7, 988.235
!42\7, 2964.706
! 18\9, 981.818
!54\9, 2945.{{Overline|45}}
|}
==Intervals==
{| class="wikitable"
!Generators
!Fourth notation
!Interval category name
!Generators
!Notation of 4/3 inverse
!Interval category name
|-
|-
| colspan="6" |The 3-note MOS has the following intervals (from some root):
| 7#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|-
|0
|8f
|Do, Sol
|25\11, 1153.846
|perfect unison
|18\8, 1136.842
|0
|29\13, 1122.581
|Do, Sol
|26\12, 1075.862
|perfect fourth
|15\7, 1058.824
|19\9, 1036.364
|-
|'''8'''
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''31\13,''' '''1200'''
|'''12\5,''' '''1200'''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|8#
|27\11, 1246.154
|20\8, 1263.158
|33\13, 1277.419
| rowspan="2" |'''13\5,''' '''1300'''
|32\12, 1324.138
|19\7, 1341.176
|25\9, 1363.636
|-
|'''9f'''
|'''29\11,''' '''1338.462'''
|'''21\8,''' '''1326.316'''
|'''34\13,''' '''1316.129'''
|'''31\12,''' '''1282.759'''
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.545'''
|-
|9
|30\11, 1384.615
|22\8, 1389.474
| 36\13, 1393.548
|14\5, 1400
|34\12, 1406.897
|20\7, 1411.765
|26\9, 1418.182
|-
|9#
|31\11, 1430.769
| rowspan="2" |23\8, 1452.632
|38\13, 1470.968
|15\5, 1500
|37\12, 1531.034
|22\7, 1552.941
| 29\9, 1581.818
|-
|Af
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!A
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|-
|A#
|34\11, 1569.231
|25\8, 1578.947
|41\13, 1587.097
| rowspan="2" |16\5, 1600
|39\12, 1613.793
|23\7, 1623.529
|30\9, 1636.364
|-
|Bf
|36\11, 1661.538
|26\8, 1642.105
|42\13, 1625.806
|38\12, 1572.034
|22\7, 1552.941
|28\9, 1527.{{Overline|27}}
|-
|'''B'''
|'''37\11,''' '''1707.692'''
|'''27\8,''' '''1705.263'''
|'''44\13,''' '''1703.226'''
|'''17\5,''' '''1700'''
|'''41\12,''' '''1696.552'''
|'''24\7,''' '''1694.118'''
|'''31\9,''' '''1690.909'''
|-
|B#
| 38\11, 1753.846
|28\8, 1768.421
|46\13, 1780.645
| rowspan="2" |'''18\5,''' '''1800'''
|44\12, 1820.690
|26\7, 1835.294
| 34\9, 1854.545
|-
|'''Cf'''
|'''40\11,''' '''1846.154'''
|'''29\8,''' '''1831.579'''
|'''47\13,''' '''1819.355'''
|'''43\12,''' '''1779.310'''
|'''25\7,''' '''1764.706'''
|'''32\9,''' '''1745.455'''
|-
|C
| 41\11, 1892.308
|30\8, 1894.737
|49\13, 1896.774
|19\5, 1900
|46\12, 1903.448
|27\7, 1905.882
|35\9, 1909.090
|-
|C#
|42\11, 1938.462
| rowspan="2" |31\8, 1957.895
|51\13, 1974.194
|20\5, 2000
|49\12, 2027.586
|29\7, 2047.059
| 38\9, 2072.727
|-
|Df
|43\11, 1984.615
|50\13, 1935.484
|19\5, 1900
|45\12, 1862.069
|26\7, 1835.294
|33\9, 1800
|-
!D
!44\11, 2030.769
!32\8, 2021.053
! 52\13, 2012.903
!20\5, 2000
!48\12, 1986.207
!28\7, 1976.471
!36\9, 1963.636
|-
| D#
|45\11, 2076.923
|33\8, 2084.211
|54\13, 2090.323
| rowspan="2" |21\5, 2100
|51\12, 2110.345
|30\7, 2117.647
|39\9, 2127.273
|-
|Ef
|47\11, 2169.231
|34\8, 2147.368
|55\13, 2129.032
|50\12, 2068.966
|29\7, 2047.059
|37\9, 2018.182
|-
|'''E'''
|'''48\11,''' '''2215.385'''
|'''35\8,''' '''2210.526'''
|'''57\13,''' '''2206.452'''
|'''22\5,''' '''2200'''
|'''53\12,''' '''2193.103'''
|'''31\7,''' '''2188.235'''
|'''40\9,''' '''2181.818'''
|-
|E#
|49\11, 2261.538
|36\8, 2273.684
|59\13, 2283.871
| rowspan="2" |'''23\5,''' '''2300'''
|56\12, 2317.241
|33\7, 2329.412
|43\9, 2345.455
|-
|'''Ff'''
|'''51\11,''' '''2353.846'''
|'''37\8,''' '''2336.842'''
|'''61\13,''' '''2322.581'''
|'''55\12,''' '''2275.864'''
|'''32\7,''' '''2258.824'''
|'''41\9,''' '''2236.364'''
|-
|F
|52\11, 2400
|38\8, 2400
|62\13, 2400
|24\5, 2400
|58\12, 2400
|34\7, 2400
|44\9, 2400
|-
|F#
|53\11, 2446.154
| rowspan="2" |39\8, 2463.158
|64\13, 2477.419
|25\5, 2500
|61\12, 2524.138
|36\7, 2541.176
|47/9, 2563.636
|-
|1f
|54\11, 2492.308
|63\13, 2438.710
|24\5, 2400
|57\12, 2358.621
|33\7, 2329.412
|42\9, 2390.909
|-
!1
!55\11, 2538.462
!40\8, 2526.316
!65\13, 2516.129
!25\5, 2500
!60\12, 2482.759
!35\7, 2470.588
!45\9, 2454.545
|}
{| class="wikitable"
!Notation
!Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Subsextal
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
|0#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|1f
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''1'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|1#
|5\11, 230.769
|4\8, 252.632
|7\13, 270.967
| rowspan="2" |'''3\5,''' '''300'''
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|2f
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|'''2'''
|8\11, 369.231
|6\8, 378.947
|10\13, 387.098
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|2#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|'''3f'''
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!3
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|3#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
|9\7, 635.294
|12\9, 654.545
|-
|4f
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
|10\9, 545.455
|-
|'''4'''
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|4#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.194
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|5f
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|'''5'''
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
|17\9, 927.727
|-
|5#
|20\11, 923.077
| rowspan="2" |15\8, 947.368
|25\13, 967.742
|10\5, 1000
|25\12, 1034.483
|15\7, 1058.824
|20\9, 1090.909
|-
|'''6f'''
|21\11, 969.231
|24\13, 929.032
|9\5, 900
|21\12, 868.966
|11\7, 776.471
|15\9, 818.182
|-
!6
!22\11, 1015.385
!16\8, 1010.526
!26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
!18\9, 981.818
|-
|6#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|7f
|25\11, 1153.846
|18\8, 1136.842
|29\13, 1122.581
|26\12, 1075.862
|15\7, 1058.824
|19\9, 1036.364
|-
|7
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''31\13,''' '''1200'''
|'''12\5,''' '''1200'''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|7#
|27\11, 1246.154
|20\8, 1263.158
|33\13, 1277.419
| rowspan="2" |'''13\5,''' '''1300'''
|32\12, 1324.138
|19\7, 1341.176
|25\9, 1363.636
|-
|8f
|'''29\11,''' '''1338.462'''
|'''21\8,''' '''1326.316'''
|'''34\13,''' '''1316.129'''
|'''31\12,''' '''1282.759'''
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.545'''
|-
|'''8'''
|30\11, 1384.615
|22\8, 1389.474
|36\13, 1393.548
|14\5, 1400
|34\12, 1406.897
|20\7, 1411.765
|26\9, 1418.182
|-
|8#
|31\11, 1430.769
| rowspan="2" |23\8, 1452.632
|38\13, 1470.968
|15\5, 1500
|37\12, 1531.034
|22\7, 1552.941
|29\9, 1581.818
|-
|9f
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!9
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|-
|9#
|34\11, 1569.231
|25\8, 1578.947
|41\13, 1587.097
| rowspan="2" |16\5, 1600
|39\12, 1613.793
|23\7, 1623.529
|30\9, 1636.364
|-
|Xb
|36\11, 1661.538
|26\8, 1642.105
|42\13, 1625.806
|38\12, 1572.034
|22\7, 1552.941
|28\9, 1527.{{Overline|27}}
|-
|'''X'''
|'''37\11,''' '''1707.692'''
|'''27\8,''' '''1705.263'''
|'''44\13,''' '''1703.226'''
|'''17\5,''' '''1700'''
|'''41\12,''' '''1696.552'''
|'''24\7,''' '''1694.118'''
|'''31\9,''' '''1690.909'''
|-
|X#
|38\11, 1753.846
|28\8, 1768.421
|46\13, 1780.645
| rowspan="2" |'''18\5,''' '''1800'''
|44\12, 1820.690
|26\7, 1835.294
|34\9, 1854.545
|-
|'''ɛf'''
|'''40\11,''' '''1846.154'''
|'''29\8,''' '''1831.579'''
|'''47\13,''' '''1819.355'''
|'''43\12,''' '''1779.310'''
|'''25\7,''' '''1764.706'''
|'''32\9,''' '''1745.455'''
|-
|41\11, 1892.308
|30\8, 1894.737
|49\13, 1896.774
|19\5, 1900
|46\12, 1903.448
|27\7, 1905.882
|35\9, 1909.090
|-
|ɛ#
|42\11, 1938.462
| rowspan="2" |31\8, 1957.895
|51\13, 1974.194
|20\5, 2000
|49\12, 2027.586
|29\7, 2047.059
|38\9, 2072.727
|-
|Af
|43\11, 1984.615
|50\13, 1935.484
|19\5, 1900
|45\12, 1862.069
|26\7, 1835.294
|33\9, 1800
|-
!A
!44\11, 2030.769
!32\8, 2021.053
!52\13, 2012.903
!20\5, 2000
!48\12, 1986.207
!28\7, 1976.471
!36\9, 1963.636
|-
|A#
|45\11, 2076.923
|33\8, 2084.211
|54\13, 2090.323
| rowspan="2" |21\5, 2100
|51\12, 2110.345
|30\7, 2117.647
|39\9, 2127.273
|-
|Bf
|47\11, 2169.231
|34\8, 2147.368
|55\13, 2129.032
|50\12, 2068.966
|29\7, 2047.059
|37\9, 2018.182
|-
|'''B'''
|'''48\11,''' '''2215.385'''
|'''35\8,''' '''2210.526'''
|'''57\13,''' '''2206.452'''
|'''22\5,''' '''2200'''
|'''53\12,''' '''2193.103'''
|'''31\7,''' '''2188.235'''
|'''40\9,''' '''2181.818'''
|-
|B#
|49\11, 2261.538
|36\8, 2273.684
|59\13, 2283.871
| rowspan="2" |'''23\5,''' '''2300'''
|56\12, 2317.241
|33\7, 2329.412
|43\9, 2345.455
|-
|'''Cf'''
|'''51\11,''' '''2353.846'''
|'''37\8,''' '''2336.842'''
|'''61\13,''' '''2322.581'''
|'''55\12,''' '''2275.864'''
|'''32\7,''' '''2258.824'''
|'''41\9,''' '''2236.364'''
|-
|C
|52\11, 2400
|38\8, 2400
|62\13, 2400
|24\5, 2400
|58\12, 2400
|34\7, 2400
|44\9, 2400
|-
|C#
|53\11, 2446.154
| rowspan="2" |39\8, 2463.158
|64\13, 2477.419
|25\5, 2500
|61\12, 2524.138
|36\7, 2541.176
|47/9, 2563.636
|-
|Df
|54\11, 2492.308
|63\13, 2438.710
|24\5, 2400
|57\12, 2358.621
|33\7, 2329.412
|42\9, 2390.909
|-
!D
!55\11, 2538.462
!40\8, 2526.316
!65\13, 2516.129
!25\5, 2500
!60\12, 2482.759
!35\7, 2470.588
!45\9, 2454.545
|-
|D#
|56\11, 2584.615
|41\8, 2589.474
|67\13, 2593.548
| rowspan="2" |26\5, 2600
|63\12, 2606.897
|37\7, 2611.765
|48\9, 2618.182
|-
|Ef
|58\11, 2676.923
|42\8, 2652.632
|69\13, 2670.968
|62\12, 2565.517
|36\7, 2541.176
|46\9, 2509.091
|-
|'''E'''
|'''59\11,''' '''2723.077'''
|'''43\8,''' '''2715.789'''
|'''70\13,''' '''2709.677'''
|'''27\5,''' '''2700'''
|'''65\12,''' '''2689.655'''
|'''38\7,''' '''2682.353'''
|'''49\9,''' '''2672.727'''
|-
|E#
|60\11, 2769.231
|44\8, 2778.947
|72\13, 2787.097
| rowspan="2" |'''28\5,''' '''2800'''
|68\12, 2813.793
|40\7, 2823.529
|52\9, 2836.364
|-
|'''Ff'''
|'''62\11,''' '''2861.538'''
|'''45\8,''' '''2842.105'''
|'''73\13,''' '''2825.806'''
|'''67\12,''' '''2772.034'''
|'''39\7,''' '''2752.941'''
|'''50\9,''' '''2727.273'''
|-
|F
|63\11, 2907.692
|46\8, 2905.263
|75\13, 2903.226
|29\5, 2900
|70\12, 2896.552
|41\7, 2894.118
|53\9, 2890.909
|-
|F#
|64\11, 2953.846
| rowspan="2" |47\8, 2968.421
|77\13, 2980.645
|30\5, 3000
|73\12, 3020.690
|43\7, 3035.294
|55\9, 3000
|-
|0f
|65\11, 3000
|76\13, 2941.935
|29\5, 2900
|69\29, 2855.172
|40\7, 2823.529
|52\9, 2836.364
|-
!0
!66\11, 3046.154
!48\8, 30'''31.579'''
!78\13, 30'''19.355'''
!30\5, 3000
!72\12, 29'''79.310'''
!42\7, 2964.706
!54\9, 2945.455
|}
 
 
==Intervals==
{| class="wikitable"
!Generators
!Fourth notation
!Interval category name
!Generators
!Notation of 4/3 inverse
!Interval category name
|-
| colspan="6" |The 3-note MOS has the following intervals (from some root):
|-
|0
|F/C/G ut
Do, Sol
 
د, ص
|perfect unison
|0
|F/C/G ut
Do, Sol
 
د, ص
|perfect fourth
|-
|1
|A/E/B mib
Mib, Sib
 
صb, مb
|diminished third
| -1
|G/D/A re
Re, La
 
ر, ل
|perfect second
|-
|2
|G/D/A reb
Reb, Lab
 
رb, لb
|diminished second
| -2
|A/E/B mi
Mi, Si
 
ص, م
|perfect third
|-
| colspan="6" |The chromatic 5-note MOS also has the following intervals (from some root):
|-
|3
|F/C/G utb
Dob, Solb
 
دb, صb
|diminished fourth
| -3
|F/C/G ut#
Do#, Sol#
 
د, #ص#
|augmented unison (chroma)
|-
|4
|A/E/B mibb
Mibb, Sibb
 
مbb, صbb
|doubly diminished third
| -4
|G/D/A re#
Re#, La#
 
ر ,# ل#
|augmented second
|}
==Genchain==
The generator chain for this scale is as follows:
{| class="wikitable"
|A/E/B mibb
|F/C/G utb
|G/D/A reb
|A/E/B mib
|F/C/G ut
|G/D/A re
|A/E/B mi
|F/C/G ut#
|G/D/A re#
|A/E/B mi#
|-
|Mibb
Sibb
|Dob
Solb
|Reb
Lab
|Mib
Sib
|Do
Sol
|Re
La
|Mi
Si
|Do#
Sol#
|Re#
La#
|Mi#
Si#
|-
|-
| 1
|مbb
|Mib, Sib
تbb
|diminished third
|دb
| -1
صb
|Re, La
|رb
|perfect second
لb
|مb
تb
|د
ص
|ر
ل
|م
ت
|د#
ص#
|ر#
ل#
|م#
ت#
|-
|-
|2
|dd3
|Reb, Lab
|d4
|diminished second
|d2
| -2
|d3
|Mi, Si
|P1
|perfect third
|P2
|P3
|A1
|A2
|A3
|}
==Modes==
The mode names are based on the species of fourth:
{| class="wikitable"
!Mode
!Scale
![[Modal UDP Notation|UDP]]
! colspan="2" |Interval type
|-
|-
| colspan="6" |The chromatic 5-note MOS also has the following intervals (from some root):
!name
!pattern
!notation
!2nd
!3rd
|-
|-
|3
|Major
|Dob, Solb
|LLs
| diminished fourth
|<nowiki>2|0</nowiki>
| -3
|P
|Do#, Sol#
|P
|augmented unison (chroma)
|-
|Minor
|LsL
|<nowiki>1|1</nowiki>
|P
|d
|-
|-
|4
|Phrygian
|Mibb, Sibb
|sLL
|doubly diminished third
|<nowiki>0|2</nowiki>
| -4
|d
|Re#, La#
|d
|augmented second
|}
|}
==Genchain==
==Temperaments==
The generator chain for this scale is as follows:
The most basic rank-2 temperament interpretation of diatonic is '''Mahuric'''. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled <code>root-2g-(p+g)</code> (p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations.
==='''Mahuric-Meantone'''===
[[Subgroup]]: 4/3.5/4.3/2
 
[[Comma]] list: [[81/80]]
 
[[POL2]] generator: ~9/8 = 193.6725¢
 
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
 
[[Optimal ET sequence]]: [[15ed12/5]], [[24ed12/5]], [[39ed12/5]] ≈ [[5ed4/3]], [[8ed4/3]], [[13ed4/3]]
==='''Mahuric-Superpyth'''===
[[Subgroup]]: 4/3.9/7.3/2
 
[[Comma]] list: [[64/63]]
 
[[POL2]] generator: ~8/7 = 216.7325¢
 
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
 
[[Optimal ET sequence]]: [[15ed7/3]], [[21ed7/3]], [[27ed7/3]], [[33ed7/3]] ≈ [[5ed4/3]], [[7ed4/3]], [[9ed4/3]], [[11ed4/3]]
====Scale tree====
The spectrum looks like this:
{| class="wikitable"
{| class="wikitable"
|Mibb
!Generator
Sibb
(bright)
|Dob
!Cents
Solb
!L
|Reb
!s
Lab
!L/s
|Mib
!Comments
Sib
|Do
Sol
|Re
La
|Mi
Si
|Do#
Sol#
|Re#
La#
|Mi#
Si#
|-
|-
|dd3
|1\3
|d4
|171.429
|d2
|1
|d3
|1
|P1
|1.000
|P2
|Equalised
|P3
|A1
|A2
|A3
|}
==Modes==
The mode names are based on the species of fourth:
{| class="wikitable"
!Mode
!Scale
![[Modal UDP Notation|UDP]]
! colspan="2" |Interval type
|-
|-
!name
|6\17
!pattern
|180.000
!notation
|6
! 2nd
|5
!3rd
|1.200
|
|-
|-
|Major
|5\14
|LLs
|181.818
|<nowiki>2|0</nowiki>
|5
|P
|4
|P
|1.250
|
|-
|14\39
|182.609
|14
|11
|1.273
|
|-
|-
|Minor
|9\25
|LsL
|183.051
|<nowiki>1|1</nowiki>
|9
|P
|7
|d
|1.286
|
|-
|-
|Phrygian
|4\11
|LsLL
|184.615
|<nowiki>0|2</nowiki>
|4
|d
|3
|d
|1.333
|}
|
==Temperaments==
|-
The most basic rank-2 temperament interpretation of diatonic is '''Mahuric'''. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled <code>root-2g-(p+g)</code> (p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations.
|11\30
==='''Mahuric-Meantone'''===
|185.915
[[Subgroup]]: 4/3.5/4.3/2
|11
 
|8
[[Comma]] list: [[81/80]]
|1.375
 
|
[[POL2]] generator: ~9/8 = 193.6725¢
|-
 
|7\19
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
|186.667
 
|7
[[Optimal ET sequence]]: ~(5ed4/3, 8ed4/3, 13ed4/3)
==='''Mahuric-Superpyth'''===
[[Subgroup]]: 4/3.9/7.3/2
 
[[Comma]] list: [[64/63]]
 
[[POL2]] generator: ~8/7 = 216.7325¢
 
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
 
[[Optimal ET sequence]]: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3)
====Scale tree ====
The spectrum looks like this:
{| class="wikitable"
!Generator
(bright)
!Cents
!L
!s
!L/s
!Comments
|-
|1\3
|171.429
| 1
|1
|1.000
|Equalised
|-
|6\17
|180.000
|6
|5
|5
|1.200
|1.400
|
|
|-
|-
|5\14
|10\27
|181.818
|187.500
|5
|10
|4
|7
|1.250
|1.429
|
|
|-
|-
|14\39
|13\35
|182.609
|187.952
|14
|13
|11
|9
|1.273
|1.444
|
|
|-
|-
|9\25
|16\43
|183.051
|188.253
|9
|16
|7
|11
|1.286
|1.4545
|
|
|-
|-
|4\11
|3\8
|184.615
|189.474
|4
|3
|3
|1.333
|2
|1.500
|Mahuric-Meantone starts here
|-
|14\37
|190.909
|14
|9
|1.556
|
|
|-
|-
|11\30
|11\29
|185.915
|191.304
|11
|11
| 8
|7
|1.375
|1.571
|
|
|-
|-
|7\19
|8\21
| 186.667
|192.000
|7
|8
|5
|5
| 1.400
|1.600
|
|
|-
|-
|10\27
|5\13
|187.500
|193.548
|10
|5
|3
|1.667
|
|-
|12\31
|194.595
|12
|7
|1.714
|
|-
|7\18
|195.348
|7
|7
|1.429
|4
|1.750
|
|
|-
|-
|13\35
|9\23
|187.952
|196.364
|13
|9
|9
|1.444
|5
|1.800
|
|
|-
|-
|16\43
|11\28
|188.253
|197.015
|16
|11
|11
|1.4545
|6
|1.833
|
|
|-
|-
|3\8
|13\33
|189.474
|197.468
| 3
|13
|2
|7
|1.500
|1.857
| Mahuric-Meantone starts here
|-
|14\37
|190.909
| 14
|9
|1.556
|
|
|-
|-
|11\29
|15\38
|191.304
|197.802
|11
|15
| 7
|8
|1.571
|1.875
|
|
|-
|-
|8\21
|17\43
|192.000
|198.058
|8
|17
|5
|9
|1.600
|1.889
|
|
|-
|-
|5\13
|19\48
| 193.548
|198.261
|5
|19
|3
|10
|1.667
|1.900
|
|
|-
|-
|12\31
|21\53
|194.595
|198.425
|12
|21
|7
|11
|1.714
|1.909
|
|
|-
|-
|7\18
|23\58
|195.348
|198.561
|7
|23
|4
|12
|1.750
|1.917
|
|
|-
|-
|9\23
|25\63
|196.364
|198.675
|9
|25
|5
|13
|1.800
|1.923
|
|
|-
|-
|11\28
|27\68
|197.015
|198.773
| 11
|27
|6
|14
|1.833
|1.929
|
|
|-
|-
|13\33
|29\73
|197.468
|198.857
|13
|29
|7
|15
|1.857
|1.933
|
|
|-
|-
|15\38
|31\78
|197.802
|198.930
| 15
|31
|8
|16
|1.875
|1.9375
|
|
|-
|-
|17\43
|33\83
|198.058
|198.995
|33
|17
|17
|9
|1.941
|1.889
|
|
|-
|-
|19\48
|35\88
|198.261
|199.052
|19
|35
|10
|18
|1.900
|1.944
|
|
|-
|-
|21\53
|2\5
|198.425
|200.000
|21
|2
|11
|1
|1.909
|2.000
|
|Mahuric-Meantone ends, Mahuric-Pythagorean begins
|-
|-
|23\58
|17\42
|198.561
|201.980
|23
|17
|12
|8
|1.917
|2.125
|
|
|-
|-
|25\63
|15\37
|198.675
|202.247
|25
|15
|13
|7
|1.923
|2.143
|
|
|-
|-
|27\68
|13\32
|198.773
|202.597
|27
|13
|14
|6
|1.929
|2.167
|
|
|-
|-
|29\73
|11\27
|198.857
|203.077
|29
|11
|15
|5
|1.933
|2.200
|
|
|-
|-
|31\78
|9\22
|198.930
|203.774
|31
|9
|16
|4
|1.9375
|2.250
|
|
|-
|-
|33\83
|7\17
| 198.995
|204.878
|33
|7
|17
|3
|1.941
|2.333
|
|
|-
|-
|35\88
|12\29
| 199.052
|205.714
|35
|12
|18
|5
|1.944
|2.400
|
|
|-
|-
|2\5
|5\12
|200.000
|206.897
|5
|2
|2
|1
|2.500
|2.000
|Mahuric-Neogothic heartland is from here…
|Mahuric-Meantone ends, Mahuric-Pythagorean begins
|-
|-
|17\42
|18\43
|201.980
|207.693
|17
|18
|8
|2.125
|
|-
|15\37
|202.247
|15
|7
|7
|2.143
|2.571
|
|
|-
|-
|13\32
|13\31
|202.597
|208.000
|13
|13
|6
|5
|2.167
|2.600
|
|
|-
|-
|11\27
|8\19
|203.077
|208.696
|8
|3
|2.667
|…to here
|-
|11\26
|209.524
|11
|11
|5
|4
|2.200
|2.750
|
|
|-
|-
|9\22
|14\33
|203.774
|210.000
|9
|14
|4
|5
|2.250
|2.800
|
|
|-
|-
|7\17
|3\7
|204.878
|211.755
|3
|1
|3.000
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins
|-
|22\51
|212.903
|22
|7
|7
|3
|3.143
|2.333
|
|-
|19\44
|213.084
|19
|6
|3.167
|
|
|-
|-
|12\29
|16\37
|205.714
|213.333
| 12
|16
|5
|5
|2.400
|3.200
|
|
|-
|-
|5\12
|13\30
|206.897
|213.699
|5
|13
|2
|4
|2.500
|3.250
|Mahuric-Neogothic heartland is from here…
|
|-
|-
|18\43
|10\23
|207.693
|214.286
|18
|10
|7
|3
|2.571
|3.333
|
|
|-
|-
|13\31
|7\16
|208.000
|215.385
|13
|7
|5
|2
|2.600
|3.500
|
|
|-
|-
|8\19
|11\25
|208.696
|216.393
|8
|11
|3
|3
|2.667
|3.667
|…to here
|
|-
|-
|11\26
|15\34
|209.524
|216.867
|11
|15
|4
|4
|2.750
|3.750
|
|
|-
|-
|14\33
|19\43
|210.000
|217.143
|14
|19
|5
|5
|2.800
|3.800
|
|
|-
|-
|3\7
|4\9
|211.755
|218.182
|3
|4
|1
|1
|3.000
|4.000
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins
|-
|22\51
|212.903
|22
|7
|3.143
|
|
|-
|-
|19\44
|13\29
|213.084
|219.718
| 19
|13
|6
|3
|3.167
|4.333
|
|
|-
|-
|16\37
|9\20
|213.333
|220.408
|16
|9
|5
|2
|3.200
|4.500
|
|
|-
|-
|13\30
|14\31
|213.699
|221.053
|13
|14
|4
|3
|3.250
|4.667
|
|
|-
|-
|10\23
|5\11
|214.286
|222.222
|10
|5
|3
|1
|3.333
|5.000
|
|Mahuric-Superpyth ends
|-
|-
|7\16
|11\24
|215.385
|223.728
|7
|11
|2
|2
|3.500
|5.500
|
|
|-
|-
|11\25
|17\37
|216.393
|224.176
|11
|17
|3
|3
|3.667
|5.667
|
|
|-
|-
|15\34
|6\13
|216.867
|225.000
|15
|6
|4
|1
|3.750
|6.000
|
|
|-
|-
|19\43
|1\2
|217.143
|240.000
|19
|5
|3.800
|
|-
|4\9
|218.{{Overline|18}}
|4
|1
|1
|4.000
|0
|
|→ inf
|-
|Paucitonic
|13\29
|}
|219.718
 
|13
==See also==
|3
[[2L 1s (4/3-equivalent)]] - idealized tuning
|4.333
 
|
[[4L 2s (7/4-equivalent)]] - Mixolydian and Dorian hexatonic Archytas temperament
|-
 
|9\20
[[4L 2s (39/22-equivalent)]] - Mixolydian and Dorian hexatonic Neogothic temperament
|220.408
 
|9
[[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian and Dorian hexatonic Komornik–Loreti temperament
|2
 
|4.500
[[4L 2s (9/5-equivalent)]] - Mixolydian and Dorian hexatonic Meantone temperament
|
 
|-
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament
|14\31
 
|221.053
[[6L 3s (26/11-equivalent)]] - Mahuric-Neogothic temperament
|14
 
|3
[[6L 3s (12/5-equivalent)]] - Mahuric-Meantone temperament
|4.667
 
|
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament
|-
 
|5\11
[[8L 4s (22/7-equivalent)]] and [[8L 4s (π-equivalent)|8L 4s ([math]π[/math]-equivalent)]] - Bijou Neogothic temperament
|222.222
 
|5
[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament
|1
 
|5.000
[[10L 5s (112/27-equivalent)]] - Hyperionic Archytas temperament
|Mahuric-Superpyth ends
 
|-
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament
|11\24
 
|223.728
[[10L 5s (64/15-equivalent)]] - Hyperionic Meantone temperament
|11
 
|2
[[10L 5s (30/7-equivalent)]] - Hyperionic septimal Meantone temperament
|5.500
 
|
[[12L 6s (16/3-equivalent)]] - Warped Pythagorean Subsextal temperament
|-
 
|17\37
[[12L 6s (343/64-equivalent)]] - 1/2 comma Archytas Subsextal temperament]
|224.176
 
|17
[[12L 6s (11/2-equivalent)]] - Low undecimal Subsextal temperament
|3
 
|5.667
[[12L 6s (448/81-equivalent)]] - 1/6 comma Archytas Subsextal temperament
|
 
|-
[[12L 6s (4096/729-equivalent)]] - Pythagorean Subsextal temperament
|6\13
 
|225.000
[[12L 6s (28/5-equivalent)]] - Low septimal (meantone) Subsextal temperament  
|6
 
|1
[[12L 6s (45/16-equivalent)|12L 6s (256/45-equivalent)]] - 1/6 comma meantone Subsextal temperament  
|6.000
 
|
[[12L 6s (40/7-equivalent)]] - High septimal Subsextal temperament  
|-
| 1\3
|240.000
|1
|0
|→ inf
|Paucitonic
|}
 
==See also==
[[2L 1s (4/3-equivalent)]] - idealized tuning
 
[[4L 2s (7/4-equivalent)]] - Mixolydian Archytas temperament  
 
[[4L 2s (39/22-equivalent)]] - Mixolydian Neogothic temperament  
 
[[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian Komornik–Loreti temperament  


[[4L 2s (9/5-equivalent)]] - Mixolydian Meantone temperament
[[12L 6s (64/11-equivalent)]] - High undecimal Subsextal temperament  
 
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament
 
[[6L 3s (26/11-equivalent)]] - Mahuric-Neogothic temperament
 
[[6L 3s (12/5-equivalent)]] - Mahuric-Meantone temperament
 
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament
 
[[8L 4s (22/7-equivalent)]] and [[8L 4s (π-equivalent)|8L 4s ([math]π[/math]-equivalent)]] - Bijou Neogothic temperament
 
[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament
 
[[10L 5s (112/27-equivalent)]] - Hyperionic Archytas temperament
 
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament
 
[[10L 5s (30/7-equivalent)]] - Hyperionic Meantone temperament
 
[[12L 6s (11/2-equivalent)]] - Low undecimal Subsextal temperament
 
[[12L 6s (28/5-equivalent)]] - Low septimal Subsextal temperament
 
[[12L 6s (40/7-equivalent)]] - High septimal Subsextal temperament  


[[12L 6s (64/11-equivalent)]] - High undecimal Subsextal temperament <references />
[[12L 6s (729/125-equivalent)]] - 1/2 comma meantone Subsextal temperament <references />