User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions

No edit summary
 
(28 intermediate revisions by the same user not shown)
Line 3: Line 3:
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).  
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).  


In the fourth-repeating version of the diatonic scale, each tone has a 4/3 perfect fourth above it. The scale has one major chord and two minor chords.  
In the fourth-repeating version of the diatonic scale, each tone has a perfect fourth above it. The scale has one major chord and two minor chords.  


[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]].
[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]].
==Notation==
==Notation==
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth notation and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4 and a fourth has too few notes for a structure analogous to the major scale, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
{| class="wikitable"
{| class="wikitable"
|+Cents<ref name=":05">Fractions repeating more than 4 digits written as continued fractions</ref>
|+Cents
! colspan="2" |Notation
!Notation
!Supersoft
!Supersoft
!Soft
!Soft
Line 20: Line 20:
|-
|-
!Fourth
!Fourth
!Seventh
!~11ed4/3
!~11ed4/3
!~8ed4/3
!~8ed4/3
Line 29: Line 28:
!~9ed4/3
!~9ed4/3
|-
|-
|Do#, Sol#
|F/C/G ut#
|Sol#
Do#, Sol#
|1\11
 
46; 6.5
د#,
|1\8
 
63; 6.{{Overline|3}}
ص#
|2\13
|1\11, 46.154
77; 2, 2.6
|1\8, 63.158
| rowspan="2" |1\5
|2\13, 77.419
100
| rowspan="2" |1\5, 100
|3\12
|3\12, 124.138
124; 7.25
|2\7, 141.176
|2\7
|3\9, 163.636
141; 5.{{Overline|6}}
|-
|3\9
| G/D/A reb
163.{{Overline|63}}
Reb, Lab
 
رb, لb
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''G/D/A re'''
'''Re, La'''
 
'''ر, ل'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|G/D/A re#
Re#, La#
 
ر,# ل#
|5\11, 230.769
| rowspan="2" |4\8, 252.632
|7\13, 270.967
|3\5, 300
| 8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|A/E/B mibb
Mibb, Sibb
 
مbb,تbb
|6\11, 276.923
|6\13, 232.258
|2\5, 200
|4\12, 165.517
|2\7, 141.176
|2\9, 109.091
|-
|'''A/E/B mib'''
'''Mib, Sib'''
 
'''مb,تb'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''3\5,''' '''300'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|A/E/B mi
Mi, Si
 
م, ت
|8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|A/E/B mi#
Mi#, Si#
 
م,#ت#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|F/C/G utb
Dob, Solb
 
دb,
 
صb
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!F/C/G ut
Do, Sol
 
د, ص
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|}
 
{| class="wikitable"
|+Cents
! colspan="2" |Notation
!Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
! colspan="2" |Seventh
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
|-
|Reb, Lab
!Mixolydian
|Lab
!Dorian
|3\11
!
138; 3.25
!
|2\8
!
126; 3.1{{Overline|6}}
!
|3\13
!
116; 7.75
!
|2\12
!
82; 1.3{{Overline|18}}
|1\7
70; 1.7
|1\9
54.{{Overline|54}}
|-
|-
|'''Re, La'''
| F/C/G ut#
|'''La'''
Sol#
|'''4\11'''
 
'''184; 1.625'''
ص#
|'''3\8'''
|G/D/A re#
'''189; 2.{{Overline|1}}'''
Re#
|'''5\13'''
 
'''193; 1, 1, 4.{{Overline|6}}'''
ر#
|'''2\5'''
|1\11, 46.154
'''200'''
|1\8, 63.158
|'''5\12'''
|2\13, 77.419
'''206; 1, 8.{{Overline|6}}'''
| rowspan="2" |1\5, 100
|'''3\7'''
| 3\12, 124.138
'''211; 1, 3.25'''
|2\7, 141.176
|'''4\9'''
|3\9, 163.636
'''218.{{Overline|18}}'''
|-
|-
|Re#, La#
|G/D/A reb
|La#
Lab
|5\11
 
230; 1.3
لb
|4\8
|A/E/B mib
252; 1.58{{Overline|3}}
Mib
|7\13
 
270; 1.0{{Overline|3}}
مb
| rowspan="2" |'''3\5'''
|3\11, 138.462
'''300'''
|2\8, 126.316
|8\12
|3\13, 116.129
331; 29
|2\12, 82.759
|5\7
|1\7, 70.588
352; 1.0625
|1\9, 54.545
|7\9
|-
381.{{Overline|81}}
|'''G/D/A re'''
'''La'''
 
ل
|'''A/E/B mi'''
'''Mi'''
 
م
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|G/D/A re#
La#
 
ل#
| A/E/B mi#
Mi#
 
م#
|5\11, 230.769
| rowspan="2" |4\8, 252.632
| 7\13, 270.967
|3\5, 300
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|-
|'''Mib, Sib'''
|A/E/B mibb
|'''Sib'''
Sibb
|'''7\11'''
 
'''323; 13'''
تbb
|'''5\8'''
|B/F/C fab
'''315; 1.2{{Overline|6}}'''
Fab
|'''8\13'''
 
'''309; 1, 2.1'''
فb
|'''7\12'''
|6\11, 276.923
'''289; 1, 1.9'''
|6\13, 232.258
|'''4\7'''
|2\5, 200
'''282; 2.8{{Overline|3}}'''
|4\12, 165.517
|'''5\9'''
|2\7, 141.176
'''272.{{Overline|72}}'''
|2\9, 109.091
|-
|-
|Mi, Si
|'''A/E/B mib'''
|Si
'''Sib'''
|8\11
 
369; 4.{{Overline|3}}
تb
|6\8
|'''B/F/C fa'''
378; 1.0{{Overline|5}}
'''Fa'''
|10\13
 
387; 10.{{Overline|3}}
'''ف'''
|4\5
|'''7\11,''' '''323.077'''
400
|'''5\8,''' '''315.789'''
|10\12
|'''8\13,''' '''309.677'''
413; 1, 3.8{{Overline|3}}
|'''3\5,''' '''300'''
|6\7
|'''7\12,''' '''289.655'''
423; 1.{{Overline|8}}
|'''4\7,''' '''282.353'''
|8\9
|'''5\9,''' '''272.727'''
436.{{Overline|36}}
|-
|-
|Mi#, Si#
|A/E/B mi
|Si#
Si
|9\11
 
415; 2.6
ت
| rowspan="2" |7\8
|B/F/C fa#
442; 9.5
Fa#
|12\13
 
464; 1.9375
ف#
|5\5
| 8\11, 369.231
500
|6\8, 378.947
|13\12
|10\13, 387.097
537; 14.5
|4\5, 400
|8\7
|10\12, 413.793
564; 1.41{{Overline|6}}
|6\7, 423.529
|11\9
|8\9, 436.364
600
|-
|-
|Dob, Solb
|A/E/B mi#
|Dob
Si#
|10\11
 
461; 1, 1.1{{Overline|6}}
ت#
|11\13
|B/F/C fax
425; 1.24
Fax
|4\5
 
400
فx
|9\12
|9\11, 415.385
372; 2.41{{Overline|6}}
| rowspan="2" |7\8, 442.105
|5\7
|12\13, 464.516
352; 1.0625
|5\5, 500
|6\9
|13\12, 537.069
327.{{Overline|27}}
|8\7, 564.705
|11\9, 600
|-
|-
!Do, Sol
| B/F/C fab
!Do
Dob
!'''11\11'''
 
'''507; 1.{{Overline|4}}'''
دb
!'''8\8'''
|C/G/D solb
'''505; 3.8'''
Solb
!'''13\13'''
 
'''503; 4, 2.{{Overline|3}}'''
صb
!'''5\5'''
|10\11, 461.538
'''500'''
|11\13, 425.806
!'''12\12'''
|4\5, 400
'''496; 1.8125'''
|9\12, 372.414
!'''7\7'''
|5\7, 352.941
'''494; 8.5'''
|6\9, 327.273
!'''9\9'''
'''490.{{Overline|90}}'''
|-
|-
|Do#, Sol#
!B/F/C fa
|Do#
Do
|12\11
 
553; 1.{{Overline|18}}
د
|9\8
!C/G/D sol
568; 2.375
Sol
|15\13
 
580; 1.55
ص
| rowspan="2" |6\5
!'''11\11,''' '''507.692'''
600
!'''8\8,''' '''505.263'''
|15\12
!'''13\13,''' '''503.226'''
620; 1.45
!5\5, 500
|9\7
!'''12\12,''' '''496.552'''
635; 3.4
!'''7\7,''' '''494.118'''
|12\9
!'''9\9,''' '''490.909'''
654.{{Overline|54}}
|-
|B/F/C fa#
Do#
 
د#
| C/G/D sol#
Sol#
 
ص#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
|9\7, 635.294
|12\9, 654.545
|-
|-
|Reb, Lab
|C/G/D solb
|Reb
Reb
|14\11
 
646; 6.5
رb
|10\8
|D/A/E lab
631; 1.{{Overline|72}}
Lab
|16\13
 
619; 2.{{Overline|81}}
لb
|14\12
|14\11, 646.154
579; 3.{{Overline|2}}
|10\8, 631.579
|8\7
|16\13, 619.355
564; 1.41{{Overline|6}}
|14\12, 579.310
|10\9
|8\7, 564.706
545.{{Overline|45}}
|10\9, 545.455
|-
|-
|'''Re, La'''
|'''C/G/D sol'''
|'''Re'''
'''Re'''
|'''15\11'''
 
'''692; 3.25'''
ر
|'''11\8'''
|'''D/A/E la'''
'''694; 1, 2.8'''
'''La'''
|'''18\13'''
 
'''696; 1.291{{Overline|6}}'''
ل
|'''7\5'''
|'''15\11,''' '''692.308'''
'''700'''
|'''11\8''' '''694.737'''
|'''17\12'''
|'''18\13,''' '''696.774'''
'''703; 2, 2.1{{Overline|6}}'''
|'''7\5,''' '''700'''
|'''10\7'''
|'''17\12,''' '''703.448'''
'''705; 1.1{{Overline|3}}'''
|'''10\7,''' '''705.882'''
|'''13\9'''
|'''13\9,''' '''709.091'''
'''709.{{Overline|09}}'''
|-
|-
|Re#, La#
|C/G/D sol#
|Re#
Re#
|16\11
 
738; 2.1{{Overline|6}}
د#
|12\8
|D/A/E la#
757; 1, 8.5
La#
|20\13
 
774; 5.1{{Overline|6}}
ل#
| rowspan="2" |'''8\5'''
|16\11, 738.462
'''800'''
|12\8, 757.895
|20\12
|20\13, 774.294
827; 1, 1.41{{Overline|6}}
| rowspan="2" |'''8\5,''' '''800'''
|12\7
|20\12, 827.586
847; 17
|12\7, 847.059
|16\9
|16\9, 872.727
872.{{Overline|72}}
|-
|-
|'''Mib, Sib'''
|'''D/A/E lab'''
|'''Mib'''
'''Mib'''
|'''18\11'''
 
'''830; 1.3'''
مb
|'''13\8'''
|'''E/B/F síb'''
'''821; 19'''
'''Sib'''
|'''21\13'''
 
'''812; 1, 9.{{Overline|3}}'''
تb
|'''19\12'''
|'''18\11,''' '''830.769'''
'''786; 4.8{{Overline|3}}'''
|'''13\8,''' '''821.053'''
|'''11\7'''
|'''21\13,''' '''812.903'''
'''776; 2.125'''
|'''19\12,''' '''786.207'''
|'''14\9'''
|'''11\7,''' '''776.471'''
'''763.{{Overline|63}}'''
|'''14\9,''' '''763.636'''
|-
|-
|Mi, Si
|D/A/E la
|Mi
Mi
|19\11
 
876; 1.08{{Overline|3}}
م
|14\8
|E/B/F sí
884; 4.75
Si
|23\13
 
890; 3.1
ت
|9\5
|19\11, 876.923
900
|14\8, 884.211
|22\12
|23\13, 890.323
910; 2.9
|9\5, 900
|13\7
|22\12, 910.345
917; 1.{{Overline|54}}
|13\7, 917.647
|17\9
|17\9, 927.727
927.{{Overline|27}}
|-
|-
|Mi#, Si#
|D/A/E la#
|Mi#
Mi#
|20\11
 
923: 13
م#
| rowspan="2" |15\8
|E/B/F sí#
947; 2, 1.4
Si#
|25\13
 
967; 1, 2.875
ت#
|10\5
|20\11, 923.077
1000
| rowspan="2" |15\8, 947.378
|25\12
|25\13, 967.742
1034; 2, 14
|10\5, 1000
|15\7
|25\12, 1034.483
1058; 1, 4.{{Overline|6}}
|15\7, 1058.824
|20\9
|20\9, 1090.909
1090.{{Overline|90}}
|-
|-
|Dob, Solb
|F/C/G utb
|Solb
Solb
|21\11
 
969; 4.{{Overline|3}}
صb
|24\13
|G/D/A reb
929; 31
Reb
|9\5
 
900
رb
|21\12
|21\11, 969.231
868; 1, 28
|24\13, 929.033
|11\7
|9\5, 900
776; 2.125
|21\12, 868.966
|15\9
|11\7, 776.471
818.{{Overline|18}}
|15\9, 818.182
|-
|-
!Do, Sol
!F/C/G ut
!Sol
Sol
!22\11
 
1015; 2.6
ص
!16\8
!G/D/A re
1010; 1.9
Re
!26\13
 
1006; 2, 4.{{Overline|6}}
ر
!10\5
!22\11, 1015.385
1000
! 16\8, 1010.526
!24\12
! 26\13, 1006.452
993; 9.{{Overline|6}}
!10\5, 1000
!14\7
!24\12, 993.103
988; 4.25
!14\7, 988.235
!18\9
!18\9, 981.818
981.{{Overline|81}}
|}
|}
{| class="wikitable"
{| class="wikitable"
! colspan="4" |Notation
!Notation
!Supersoft
!Supersoft
!Soft
!Soft
Line 334: Line 489:
|-
|-
!Mahur
!Mahur
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
! ~9ed4/3
|-
|G#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|Jf, Af
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''J, A'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
| J#, A#
|5\11, 230.769
|4\8, 252.632
|7\13, 270.968
| rowspan="2" |'''3\5,''' '''300'''
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|'''Af, Bf'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|A, B
|8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|A#, B#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|Bb, Cf
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!B, C
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|B#, C#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
| 9\7, 635.294
| 12\9, 654.545
|-
|Cf, Qf
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
| 10\9, 545.455
|-
|'''C, Q'''
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|C#, Q#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.194
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|'''Qf, Df'''
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|Q, D
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
| 17\9, 927.727
|-
|Q#, D#
|20\11, 923.077
| rowspan="2" |15\8, 947.368
|25\13, 967.742
| 10\5, 1000
|25\12, 1034.483
| 15\7, 1058.824
| 20\9, 1090.909
|-
|Df, Sf
| 21\11, 969.231
|24\13, 929.033
|9\5, 900
|21\12, 868.966
|11\7, 776.471
|15\9, 818.182
|-
!D, S
!22\11, 1015.385
!16\8, 1010.526
!26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
!18\9, 981.818
|-
|D#, S#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|Ef
|25\11, 1153.846
|18\8, 1136.842
|29\13, 1122.581
|26\12, 1075.862
|15\7, 1058.824
|19\9, 1036.364
|-
|'''E'''
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''31\13,''' '''1200'''
|'''12\5,''' '''1200'''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|E#
|27\11, 1246.154
|20\8, 1263.158
|33\13, 1277.419
| rowspan="2" |'''13\5,''' '''1300'''
|32\12, 1324.138
|19\7, 1341.176
|25\9, 1363.636
|-
|'''Ff'''
|'''29\11,''' '''1338.462'''
|'''21\8,''' '''1326.316'''
|'''34\13,''' '''1316.129'''
|'''31\12,''' '''1282.759'''
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.545'''
|-
|F
|30\11, 1384.615
|22\8, 1389.474
|36\13, 1393.548
|14\5, 1400
|34\12, 1406.897
|20\7, 1411.765
| 26\9, 1418.182
|-
|F#
|31\11, 1430.769
| rowspan="2" |23\8, 1452.632
|38\13, 1470.968
|15\5, 1500
|37\12, 1531.034
|22\7, 1552.941
| 29\9, 1581.818
|-
|Gf
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!G
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|}
{| class="wikitable"
!Notation
! Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Bijou
!Bijou
!Hyperionic
!Subsextal
!~11ed4/3
!~11ed4/3
!~8ed4/3
! ~8ed4/3
!~13ed4/3
!~13ed4/3
!~5ed4/3
!~5ed4/3
Line 345: Line 751:
!~9ed4/3
!~9ed4/3
|-
|-
|G#
|0#, E#
|0#, E#
|1#
|1\11, 46.154
|0#
|1\8, 63.158
|1\11
|2\13, 77.419
46; 6.5
| rowspan="2" |1\5, 100
|1\8
|3\12, 124.138
63; 6.{{Overline|3}}
|2\7, 141.176
|2\13
| 3\9, 163.636
77; 2, 2.6
| rowspan="2" |1\5
 
100
|3\12
124; 7.25
|2\7
141; 5.{{Overline|6}}
|3\9
163.{{Overline|63}}
|-
|-
|Jf, Af
|1b, 1d
|1b, 1d
|2f
|3\11, 138.462
|1f
|2\8, 126.316
|3\11
|3\13, 116.129
138; 3.25
| 2\12, 82.759
|2\8
|1\7, 70.588
126; 3.1{{Overline|6}}
|1\9, 54.545
|3\13
116; 7.75
|2\12
82; 1.3{{Overline|18}}
|1\7
70; 1.7
|1\9
54.{{Overline|54}}
|-
|-
|'''J, A'''
|'''1'''
|'''2'''
|'''1'''
|'''1'''
|'''4\11'''
|'''4\11,''' '''184.615'''
'''184; 1.625'''
|'''3\8,''' '''189.474'''
|'''3\8'''
|'''5\13,''' '''193.548'''
'''189; 2.{{Overline|1}}'''
|'''2\5,''' '''200'''
|'''5\13'''
|'''5\12,''' '''206.897'''
'''193; 1, 1, 4.{{Overline|6}}'''
|'''3\7,''' '''211.765'''
|'''2\5'''
|'''4\9,''' '''218.182'''
'''200'''
|'''5\12'''
'''206; 1, 8.{{Overline|6}}'''
|'''3\7'''
'''211; 1, 3.25'''
|'''4\9'''
'''218.{{Overline|18}}'''
|-
|-
|J#, A#
|1#
|1#
|5\11, 230.769
|4\8, 252.632
|7\13, 270.968
| rowspan="2" |'''3\5,''' '''300'''
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|'''2b, 2d'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|2
|8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|2#
|2#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|3b, 3d
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!3
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|3#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
|9\7, 635.294
|12\9, 654.545
|-
|4b, 4d
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
|10\9, 545.455
|-
|'''4'''
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|4#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.194
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|'''5b, 5d'''
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|5
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
|17\9, 927.727
|-
|5#
|20\11, 923.077
| rowspan="2" |15\8, 947.368
|25\13, 967.742
|10\5, 1000
|25\12, 1034.483
|15\7, 1058.824
|20\9, 1090.909
|-
|6b, 6d
|21\11, 969.231
|24\13, 929.033
| 9\5, 900
|21\12, 868.966
|11\7, 776.471
|15\9, 818.182
|-
!6
!22\11, 1015.385
!16\8, 1010.526
!26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
!18\9, 981.818
|-
|6#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|7b, 7d
| 25\11, 1153.846
|18\8, 1136.842
|29\13, 1122.581
|26\12, 1075.862
|15\7, 1058.824
|19\9, 1036.364
|-
|'''7'''
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''31\13,''' '''1200'''
|'''12\5,''' '''1200'''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|7#
|27\11, 1246.154
|20\8, 1263.158
|33\13, 1277.419
| rowspan="2" |'''13\5,''' '''1300'''
|32\12, 1324.138
|19\7, 1341.176
|25\9, 1363.636
|-
|'''8b, Gd'''
|'''29\11,''' '''1338.462'''
|'''21\8,''' '''1326.316'''
|'''34\13,''' '''1316.129'''
|'''31\12,''' '''1282.759'''
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.545'''
|-
|8, G
|30\11, 1384.615
|22\8, 1389.474
|36\13, 1393.548
|14\5, 1400
|34\12, 1406.897
|20\7, 1411.765
|26\9, 1418.182
|-
|8#, G#
|31\11, 1430.769
| rowspan="2" |23\8, 1452.632
|38\13, 1470.968
|15\5, 1500
|37\12, 1531.034
|22\7, 1552.941
| 29\9, 1581.818
|-
|9b, Ad
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!'''9, A'''
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|-
|9#, A#
|34\11, 1569.231
| 25\8, 1578.947
|41\13, 1587.097
| rowspan="2" |16\5, 1600
|39\12, 1613.793
|23\7, 1623.529
|30\9, 1636.364
|-
|Xb, Bd
|36\11, 1661.538
|26\8, 1642.105
|42\13, 1625.806
|38\12, 1572.034
| 22\7, 1552.941
|28\9, 1527.{{Overline|27}}
|-
|'''X, B'''
|'''37\11,''' '''1707.692'''
|'''27\8,''' '''1705.263'''
|'''44\13,''' '''1703.226'''
|'''17\5,''' '''1700'''
|'''41\12,''' '''1696.552'''
|'''24\7,''' '''1694.118'''
|'''31\9,''' '''1690.909'''
|-
|X#, B#
|38\11, 1753.846
|28\8, 1768.421
|46\13, 1780.645
| rowspan="2" |'''18\5,''' '''1800'''
|44\12, 1820.690
|26\7, 1835.294
|34\9, 1854.545
|-
|'''Eb, Dd'''
|'''40\11,''' '''1846.154'''
|'''29\8,''' '''1831.579'''
|'''47\13,''' '''1819.355'''
|'''43\12,''' '''1779.310'''
|'''25\7,''' '''1764.706'''
|'''32\9,''' '''1745.455'''
|-
|E, D
|41\11, 1892.308
|30\8, 1894.737
|49\13, 1896.774
|19\5, 1900
|46\12, 1903.448
|27\7, 1905.882
|35\9, 1909.090
|-
|E#, D#
|42\11, 1938.462
| rowspan="2" |31\8, 1957.895
|51\13, 1974.194
|20\5, 2000
|49\12, 2027.586
|29\7, 2047.059
|38\9, 2072.727
|-
|0b, Ed
|43\11, 1984.615
|50\13, 1935.484
|19\5, 1900
|45\12, 1862.069
|26\7, 1835.294
|33\9, 1800
|-
!0, E
!44\11, 2030.769
!32\8, 2021.053
!52\13, 2012.903
!20\5, 2000
!48\12, 1986.207
!28\7, 1976.471
!36\9, 1963.636
|}
{| class="wikitable"
! Notation
!Supersoft
! Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Hyperionic
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
|1#
|1#
|5\11
|1\11, 46.154
230; 1.3
|1\8, 63.158
|4\8
|2\13, 77.419
252; 1.58{{Overline|3}}
| rowspan="2" |1\5, 100
|7\13
|3\12, 124.138
270; 1.0{{Overline|3}}
|2\7, 141.176
| rowspan="2" |'''3\5'''
|3\9, 163.636
'''300'''
|8\12
331; 29
|5\7
352; 1.0625
|7\9
381.{{Overline|81}}
|-
|-
|'''Af, Bf'''
|'''2b, 2d'''
|'''3f'''
|2f
|2f
|'''7\11'''
|3\11, 138.462
'''323; 13'''
|2\8, 126.316
|'''5\8'''
|3\13, 116.129
'''315; 1.2{{Overline|6}}'''
|2\12, 82.759
|'''8\13'''
| 1\7, 70.588
'''309; 1, 2.1'''
|1\9, 54.545
|'''7\12'''
'''289; 1, 1.9'''
|'''4\7'''
'''282; 2.8{{Overline|3}}'''
|'''5\9'''
'''272.{{Overline|72}}'''
|-
|-
|A, B
|2
|3
|'''2'''
|'''2'''
|8\11
|'''4\11,''' '''184.615'''
369; 4.{{Overline|3}}
|'''3\8,''' '''189.474'''
|6\8
|'''5\13,''' '''193.548'''
378; 1.0{{Overline|5}}
|'''2\5,''' '''200'''
|10\13
|'''5\12,''' '''206.897'''
387; 10.{{Overline|3}}
|'''3\7,''' '''211.765'''
|4\5
|'''4\9,''' '''218.182'''
400
|10\12
413; 1, 3.8{{Overline|3}}
|6\7
423; 1.{{Overline|8}}
|8\9
436.{{Overline|36}}
|-
|-
|A#, B#
|2#
|2#
| 5\11, 230.769
|4\8, 252.632
|7\13, 270.967
| rowspan="2" |'''3\5,''' '''300'''
| 8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|'''3f'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|3
|8\11, 369.231
|6\8, 378.947
|10\13, 387.098
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|3#
|3#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|4f
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!4
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|4#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
|9\7, 635.294
|12\9, 654.545
|-
|5f
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
|10\9, 545.455
|-
|'''5'''
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|5#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.194
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|'''6f'''
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|6
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
|17\9, 927.727
|-
|6#
|20\11, 923.077
| rowspan="2" |15\8, 947.368
|25\13, 967.742
|10\5, 1000
| 25\12, 1034.483
|15\7, 1058.824
|20\9, 1090.909
|-
|7f
|21\11, 969.231
|24\13, 929.032
|9\5, 900
|21\12, 868.966
| 11\7, 776.471
|15\9, 818.182
|-
!7
!22\11, 1015.385
!16\8, 1010.526
!26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
! 18\9, 981.818
|-
| 7#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|8f
|25\11, 1153.846
|18\8, 1136.842
|29\13, 1122.581
|26\12, 1075.862
|15\7, 1058.824
|19\9, 1036.364
|-
|'''8'''
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''31\13,''' '''1200'''
|'''12\5,''' '''1200'''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|8#
|27\11, 1246.154
|20\8, 1263.158
|33\13, 1277.419
| rowspan="2" |'''13\5,''' '''1300'''
|32\12, 1324.138
|19\7, 1341.176
|25\9, 1363.636
|-
|'''9f'''
|'''29\11,''' '''1338.462'''
|'''21\8,''' '''1326.316'''
|'''34\13,''' '''1316.129'''
|'''31\12,''' '''1282.759'''
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.545'''
|-
|9
|30\11, 1384.615
|22\8, 1389.474
| 36\13, 1393.548
|14\5, 1400
|34\12, 1406.897
|20\7, 1411.765
|26\9, 1418.182
|-
|9#
|31\11, 1430.769
| rowspan="2" |23\8, 1452.632
|38\13, 1470.968
|15\5, 1500
|37\12, 1531.034
|22\7, 1552.941
| 29\9, 1581.818
|-
|Af
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!A
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|-
|A#
|34\11, 1569.231
|25\8, 1578.947
|41\13, 1587.097
| rowspan="2" |16\5, 1600
|39\12, 1613.793
|23\7, 1623.529
|30\9, 1636.364
|-
|Bf
|36\11, 1661.538
|26\8, 1642.105
|42\13, 1625.806
|38\12, 1572.034
|22\7, 1552.941
|28\9, 1527.{{Overline|27}}
|-
|'''B'''
|'''37\11,''' '''1707.692'''
|'''27\8,''' '''1705.263'''
|'''44\13,''' '''1703.226'''
|'''17\5,''' '''1700'''
|'''41\12,''' '''1696.552'''
|'''24\7,''' '''1694.118'''
|'''31\9,''' '''1690.909'''
|-
|B#
| 38\11, 1753.846
|28\8, 1768.421
|46\13, 1780.645
| rowspan="2" |'''18\5,''' '''1800'''
|44\12, 1820.690
|26\7, 1835.294
| 34\9, 1854.545
|-
|'''Cf'''
|'''40\11,''' '''1846.154'''
|'''29\8,''' '''1831.579'''
|'''47\13,''' '''1819.355'''
|'''43\12,''' '''1779.310'''
|'''25\7,''' '''1764.706'''
|'''32\9,''' '''1745.455'''
|-
|C
| 41\11, 1892.308
|30\8, 1894.737
|49\13, 1896.774
|19\5, 1900
|46\12, 1903.448
|27\7, 1905.882
|35\9, 1909.090
|-
|C#
|42\11, 1938.462
| rowspan="2" |31\8, 1957.895
|51\13, 1974.194
|20\5, 2000
|49\12, 2027.586
|29\7, 2047.059
| 38\9, 2072.727
|-
|Df
|43\11, 1984.615
|50\13, 1935.484
|19\5, 1900
|45\12, 1862.069
|26\7, 1835.294
|33\9, 1800
|-
!D
!44\11, 2030.769
!32\8, 2021.053
! 52\13, 2012.903
!20\5, 2000
!48\12, 1986.207
!28\7, 1976.471
!36\9, 1963.636
|-
| D#
|45\11, 2076.923
|33\8, 2084.211
|54\13, 2090.323
| rowspan="2" |21\5, 2100
|51\12, 2110.345
|30\7, 2117.647
|39\9, 2127.273
|-
|Ef
|47\11, 2169.231
|34\8, 2147.368
|55\13, 2129.032
|50\12, 2068.966
|29\7, 2047.059
|37\9, 2018.182
|-
|'''E'''
|'''48\11,''' '''2215.385'''
|'''35\8,''' '''2210.526'''
|'''57\13,''' '''2206.452'''
|'''22\5,''' '''2200'''
|'''53\12,''' '''2193.103'''
|'''31\7,''' '''2188.235'''
|'''40\9,''' '''2181.818'''
|-
|E#
|49\11, 2261.538
|36\8, 2273.684
|59\13, 2283.871
| rowspan="2" |'''23\5,''' '''2300'''
|56\12, 2317.241
|33\7, 2329.412
|43\9, 2345.455
|-
|'''Ff'''
|'''51\11,''' '''2353.846'''
|'''37\8,''' '''2336.842'''
|'''61\13,''' '''2322.581'''
|'''55\12,''' '''2275.864'''
|'''32\7,''' '''2258.824'''
|'''41\9,''' '''2236.364'''
|-
|F
|52\11, 2400
|38\8, 2400
|62\13, 2400
|24\5, 2400
|58\12, 2400
|34\7, 2400
|44\9, 2400
|-
|F#
|53\11, 2446.154
| rowspan="2" |39\8, 2463.158
|64\13, 2477.419
|25\5, 2500
|61\12, 2524.138
|36\7, 2541.176
|47/9, 2563.636
|-
|1f
|54\11, 2492.308
|63\13, 2438.710
|24\5, 2400
|57\12, 2358.621
|33\7, 2329.412
|42\9, 2390.909
|-
!1
!55\11, 2538.462
!40\8, 2526.316
!65\13, 2516.129
!25\5, 2500
!60\12, 2482.759
!35\7, 2470.588
!45\9, 2454.545
|}
{| class="wikitable"
!Notation
!Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Subsextal
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
|0#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|1f
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''1'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|1#
|5\11, 230.769
|4\8, 252.632
|7\13, 270.967
| rowspan="2" |'''3\5,''' '''300'''
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|2f
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|'''2'''
|8\11, 369.231
|6\8, 378.947
|10\13, 387.098
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|2#
|2#
|9\11
|9\11, 415.385
415; 2.6
| rowspan="2" |7\8, 442.105
| rowspan="2" |7\8
|12\13, 464.516
442; 9.5
|5\5, 500
|12\13
|13\12, 537.069
464; 1.9375
|8\7, 564.705
|5\5
|11\9, 600
500
|13\12
537; 14.5
|8\7
564; 1.41{{Overline|6}}
|11\9
600
|-
|-
|Bb, Cf
|3b, 3d
|4f
|'''3f'''
|'''3f'''
|10\11
|10\11, 461.538
461; 1, 1.1{{Overline|6}}
|11\13, 425.806
|11\13
|4\5, 400
425; 1.24
|9\12, 372.414
|4\5
|5\7, 352.941
400
|6\9, 327.273
|9\12
372; 2.41{{Overline|6}}
|5\7
352; 1.0625
|6\9
327.{{Overline|27}}
|-
|-
!B, C
!3
!3
!4
!'''11\11,''' '''507.692'''
!3
!'''8\8,''' '''505.263'''
!'''11\11'''
!'''13\13,''' '''503.226'''
'''507; 1.{{Overline|4}}'''
!5\5, 500
!'''8\8'''
!'''12\12,''' '''496.552'''
'''505; 3.8'''
!'''7\7,''' '''494.118'''
!'''13\13'''
!'''9\9,''' '''490.909'''
'''503; 4, 2.{{Overline|3}}'''
!'''5\5'''
'''500'''
!'''12\12'''
'''496; 1.8125'''
!'''7\7'''
'''494; 8.5'''
!'''9\9'''
'''490.{{Overline|90}}'''
|-
|-
|B#, C#
|3#
|4#
|3#
|3#
|12\11
|12\11, 553.846
553; 1.{{Overline|18}}
|9\8, 568.421
|9\8
|15\13, 580.645
568; 2.375
| rowspan="2" |6\5, 600
|15\13
|15\12, 620.690
580; 1.55
|9\7, 635.294
| rowspan="2" |6\5
|12\9, 654.545
600
|15\12
620; 1.45
|9\7
635; 3.4
|12\9
654.{{Overline|54}}
|-
|-
|Cf, Qf
|4b, 4d
|5f
|4f
|4f
|14\11
|14\11, 646.154
646; 6.5
|10\8, 631.579
|10\8
|16\13, 619.355
631; 1.{{Overline|72}}
|14\12, 579.310
|16\13
|8\7, 564.706
619; 2.{{Overline|81}}
|10\9, 545.455
|14\12
579; 3.{{Overline|2}}
|8\7
564; 1.41{{Overline|6}}
|10\9
545.{{Overline|45}}
|-
|-
|'''C, Q'''
|'''4'''
|'''4'''
|'''5'''
|'''15\11,''' '''692.308'''
|'''4'''
|'''11\8''' '''694.737'''
|'''15\11'''
|'''18\13,''' '''696.774'''
'''692; 3.25'''
|'''7\5,''' '''700'''
|'''11\8'''
|'''17\12,''' '''703.448'''
'''694; 1, 2.8'''
|'''10\7,''' '''705.882'''
|'''18\13'''
|'''13\9,''' '''709.091'''
'''696; 1.291{{Overline|6}}'''
|'''7\5'''
'''700'''
|'''17\12'''
'''703; 2, 2.1{{Overline|6}}'''
|'''10\7'''
'''705; 1.1{{Overline|3}}'''
|'''13\9'''
'''709.{{Overline|09}}'''
|-
|-
|C#, Q#
|4#
|5#
|4#
|4#
|16\11
|16\11, 738.462
738; 2.1{{Overline|6}}
|12\8, 757.895
|12\8
|20\13, 774.194
757; 1, 8.5
| rowspan="2" |'''8\5,''' '''800'''
|20\13
|20\12, 827.586
774; 5.1{{Overline|6}}
|12\7, 847.059
| rowspan="2" |'''8\5'''
|16\9, 872.727
'''800'''
|20\12
827; 1, 1.41{{Overline|6}}
|12\7
847; 17
|16\9
872.{{Overline|72}}
|-
|-
|'''Qf, Df'''
|'''5b, 5d'''
|'''6f'''
|5f
|5f
|'''18\11'''
|'''18\11,''' '''830.769'''
'''830; 1.3'''
|'''13\8,''' '''821.053'''
|'''13\8'''
|'''21\13,''' '''812.903'''
'''821; 19'''
|'''19\12,''' '''786.207'''
|'''21\13'''
|'''11\7,''' '''776.471'''
'''812; 1, 9.{{Overline|3}}'''
|'''14\9,''' '''763.636'''
|'''19\12'''
'''786; 4.8{{Overline|3}}'''
|'''11\7'''
'''776; 2.125'''
|'''14\9'''
'''763.{{Overline|63}}'''
|-
|-
|Q, D
|5
|6
|'''5'''
|'''5'''
|19\11
|19\11, 876.923
876; 1.08{{Overline|3}}
|14\8, 884.211
|14\8
|23\13, 890.323
884; 4.75
|9\5, 900
|23\13
|22\12, 910.345
890; 3.1
|13\7, 917.647
|9\5
|17\9, 927.727
900
|22\12
910; 2.9
|13\7
917; 1.{{Overline|54}}
|17\9
927.{{Overline|27}}
|-
|-
|Q#, D#
|5#
|5#
|6#
|20\11, 923.077
|5#
| rowspan="2" |15\8, 947.368
|20\11
|25\13, 967.742
923: 13
|10\5, 1000
| rowspan="2" |15\8
|25\12, 1034.483
947; 2, 1.4
|15\7, 1058.824
|25\13
|20\9, 1090.909
967; 1, 2.875
|10\5
1000
|25\12
1034; 2, 14
|15\7
1058; 1, 4.{{Overline|6}}
|20\9
1090.{{Overline|90}}
|-
|-
|Df, Sf
|6b, 6d
|7f
|'''6f'''
|'''6f'''
|21\11
|21\11, 969.231
969; 4.{{Overline|3}}
|24\13, 929.032
|24\13
|9\5, 900
929; 31
|21\12, 868.966
|9\5
|11\7, 776.471
900
|15\9, 818.182
|21\12
868; 1, 28
|11\7
776; 2.125
|15\9
818.{{Overline|18}}
|-
|-
!D, S
!6
!7
!6
!6
!22\11
!22\11, 1015.385
1015; 2.6
!16\8, 1010.526
!16\8
!26\13, 1006.452
1010; 1.9
!10\5, 1000
!26\13
!24\12, 993.103
1006; 2, 4.{{Overline|6}}
!14\7, 988.235
!10\5
!18\9, 981.818
1000
!24\12
993; 9.{{Overline|6}}
!14\7
988; 4.25
!18\9
981.{{Overline|81}}
|-
|-
|D#, S#
|6#
|6#
|7#
|23\11, 1061.538
|6#
|17\8, 1073.684
|23\11
|28\13, 1083.871
1061; 1, 1.1{{Overline|6}}
| rowspan="2" |11\5, 1100
|17\8
|27\12, 1117.241
1073; 1, 2.1{{Overline|6}}
|16\7, 1129.412
|28\13
|21\9, 1145.455
1083; 1.{{Overline|148}}
| rowspan="2" |11\5
1100
|27\12
1117; 4, 7
|16\7
1129; 2, 2.{{Overline|3}}
|24\9
1309.{{Overline|09}}
|-
|-
|Ef
|7b, 7d
|8f
|7f
|7f
|25\11
|25\11, 1153.846
1153; 1.{{Overline|18}}
|18\8, 1136.842
|18\8
|29\13, 1122.581
1136; 1.1875
|26\12, 1075.862
|29\13
|15\7, 1058.824
1122; 1.7{{Overline|2}}
|19\9, 1036.364
|26\12
1075; 1.16
|15\7
1058; 1, 4.{{Overline|6}}
|19\9
1036.{{Overline|36}}
|-
|-
|'''E'''
|'''7'''
|'''8'''
|7
|7
|'''26\11'''
|'''26\11,''' '''1200'''
'''1200'''
|'''19\8,''' '''1200'''
|'''19\8'''
|'''31\13,''' '''1200'''
'''1200'''
|'''12\5,''' '''1200'''
|'''31\13'''
|'''29\12,''' '''1200'''
'''1200'''
|'''17\7,''' '''1200'''
|'''12\5'''
|'''22\9,''' '''1200'''
'''1200'''
|'''29\12'''
'''1200'''
|'''17\7'''
'''1200'''
|'''22\9'''
'''1200'''
|-
|-
|E#
|7#
|8#
|7#
|7#
|27\11
|27\11, 1246.154
1246; 6,5
|20\8, 1263.158
|20\8
|33\13, 1277.419
1263; 6.{{Overline|3}}
| rowspan="2" |'''13\5,''' '''1300'''
|33\13
|32\12, 1324.138
1277; 2, 2.6
|19\7, 1341.176
| rowspan="2" |'''13\5'''
|25\9, 1363.636
'''1300'''
|32\12
1324; 7.25
|19\7
1341; 5.{{Overline|6}}
|25\9
1363.{{Overline|63}}
|-
|-
|'''Ff'''
|'''8b, Gd'''
|'''9f'''
|8f
|8f
|'''29\11'''
|'''29\11,''' '''1338.462'''
'''1338; 3.25'''
|'''21\8,''' '''1326.316'''
|'''21\8'''
|'''34\13,''' '''1316.129'''
'''1326; 3.16̄'''
|'''31\12,''' '''1282.759'''
|'''34\13'''
|'''18\7,''' '''1270.588'''
'''1316; 7.75'''
|'''23\9,''' '''1254.545'''
|'''31\12'''
'''1282; 1.3{{Overline|18}}'''
|'''18\7'''
'''1270; 1.7'''
|'''23\9'''
'''1254.{{Overline|54}}'''
|-
|-
|F
|8, G
|9
|'''8'''
|'''8'''
|30\11
|30\11, 1384.615
1384; 1.625
|22\8, 1389.474
|22\8
|36\13, 1393.548
1389; 2.
|14\5, 1400
|36\13
|34\12, 1406.897
1393; 1, 1, 4.{{Overline|6}}
|20\7, 1411.765
|14\5
|26\9, 1418.182
1400
|34\12
1406; 1, 8.{{Overline|6}}
|20\7
1411; 1, 3.25
|26\9
1418.{{Overline|18}}
|-
|-
|F#
|8#, G#
|9#
|8#
|8#
|31\11
|31\11, 1430.769
1430; 1.3
| rowspan="2" |23\8, 1452.632
| rowspan="2" |23\8
|38\13, 1470.968
1452; 1.58{{Overline|3}}
|15\5, 1500
|38\13
|37\12, 1531.034
1470; 1.0{{Overline|3}}
|22\7, 1552.941
|15\5
|29\9, 1581.818
1500
|37\12
1531; 29
|22\7
1552; 1.0625
|29\9
1581.{{Overline|81}}
|-
|-
|Gf
|9b, Ad
|Af
|9f
|9f
|32\11
|32\11, 1476.923
1476; 1.08{{Overline|3}}
|37\13, 1432.258
|37\13
|14\5, 1400
1432: 3.875
|33\12, 1365.517
|14\5
|19\7, 1341.176
1400
|24\9, 1309.091
|33\12
1365; 1.9{{Overline|3}}
|19\7
1341; 5.{{Overline|3}}
|24\9
1309.{{Overline|09}}
|-
|-
!G
!'''9, A'''
!A
!9
!9
!33\11
!33\11, 1523.077
1523; 13
!24\8, 1515.789
!24\8
!39\13, 1509.677
1515; 1.2{{Overline|6}}
!15\5, 1500
!39\13
!36\12, 1489.655
1509; 1, 2.1
!21\7, 1482.353
!15\5
!27\9, 1472.727
1500
!36\12
1489; 1, 1.9
!21\7
1482; 2.8{{Overline|3}}
!27\9
1472.{{Overline|72}}
|-
|-
|G#
|9#, A#
|A#
|9#
|9#
|34\11
|34\11, 1569.231
1569; 4.{{Overline|3}}
|25\8, 1578.947
|25\8
|41\13, 1587.097
1578; 1.05̄
| rowspan="2" |16\5, 1600
|41\13
|39\12, 1613.793
1587; 10.{{Overline|3}}
|23\7, 1623.529
| rowspan="2" |16\5
|30\9, 1636.364
1600
|39\12
1613; 1, 3.8{{Overline|3}}
|23\7
1623; 1.{{Overline|8}}
|30\9
1636.{{Overline|36}}
|-
|-
|Jf, Af
|Xb, Bd
|Bf
|Xb
|Xb
|36\11
|36\11, 1661.538
1661; 1, 1.1{{Overline|6}}
|26\8, 1642.105
|26\8
|42\13, 1625.806
1642; 9.5
|38\12, 1572.034
|42\13
|22\7, 1552.941
1625; 1.24
|28\9, 1527.{{Overline|27}}
|38\12
1572; 29
|22\7
1552; 1.0625
|28\9
1527.{{Overline|27}}
|-
|-
|'''J, A'''
|'''X, B'''
|'''B'''
|'''X'''
|'''X'''
|'''37\11'''
|'''37\11,''' '''1707.692'''
'''1707; 1.{{Overline|4}}'''
|'''27\8,''' '''1705.263'''
|'''27\8'''
|'''44\13,''' '''1703.226'''
'''1705; 3.8'''
|'''17\5,''' '''1700'''
|'''44\13'''
|'''41\12,''' '''1696.552'''
'''1703; 4, 2.'''
|'''24\7,''' '''1694.118'''
|'''17\5'''
|'''31\9,''' '''1690.909'''
 
'''1700'''
|'''41\12'''
'''1696; 1.8125'''
|'''24\7'''
'''1694; 8.5'''
|'''31\9'''
'''1690.{{Overline|90}}'''
|-
|-
|J#, A#
|X#, B#
|B#
|X#
|X#
|38\11
|38\11, 1753.846
1753; 1.{{Overline|18}}
|28\8, 1768.421
|28\8
|46\13, 1780.645
1768; 2.375
| rowspan="2" |'''18\5,''' '''1800'''
|46\13
|44\12, 1820.690
1780; 1.55
|26\7, 1835.294
| rowspan="2" |'''18\5'''
|34\9, 1854.545
'''1800'''
|44\12
1820; 1.45
|26\7
1835; 3,4
|34\9
1854.{{Overline|54}}
|-
|-
|'''Af, Bf'''
|'''Eb, Dd'''
|'''Cf'''
|'''ɛf'''
|'''ɛf'''
|'''40\11'''
|'''40\11,''' '''1846.154'''
'''1846; 6.5'''
|'''29\8,''' '''1831.579'''
|'''29\8'''
|'''47\13,''' '''1819.355'''
 
|'''43\12,''' '''1779.310'''
'''1831; 1.{{Overline|72}}'''
|'''25\7,''' '''1764.706'''
|'''47\13'''
|'''32\9,''' '''1745.455'''
'''1819; 2.{{Overline|81}}'''
|'''43\12'''
'''1779; 3.{{Overline|2}}'''
|'''25\7'''
'''1764; 1, 3.25'''
|'''32\9'''
'''1745.{{Overline|45}}'''
|-
|-
|A, B
|E, D
|C
|41\11
|41\11, 1892.308
1892; 3.25
|30\8, 1894.737
|30\8
|49\13, 1896.774
1894; 1, 2.8
|19\5, 1900
|49\13
|46\12, 1903.448
1896; 1.291{{Overline|6}}
|27\7, 1905.882
|19\5
|35\9, 1909.090
1900
|46\12
1903; 2, 2.1{{Overline|6}}
|27\7
1905; 1, 7.5
|35\9
1909.{{Overline|09}}
|-
|-
|A#, B#
|E#, D#
|C#
|ɛ#
|ɛ#
|42\11
|42\11, 1938.462
1938; 2.1{{Overline|6}}
| rowspan="2" |31\8, 1957.895
| rowspan="2" |31\8
|51\13, 1974.194
1957; 1, 8.5
|20\5, 2000
|51\13
|49\12, 2027.586
1974; 5.1{{Overline|6}}
|29\7, 2047.059
|20\5
|38\9, 2072.727
2000
|49\12
2027; 1, 1.41{{Overline|6}}
|29\7
2047; 17
|38\9
2072.{{Overline|72}}
|-
|-
|Bb, Cf
|0b, Ed
|Df
|Af
|Af
|43\11
|43\11, 1984.615
1984; 1.625
|50\13, 1935.484
|50\13
|19\5, 1900
1935; 2.0{{Overline|6}}
|45\12, 1862.069
|19\5
|26\7, 1835.294
1900
|33\9, 1800
|45\12
1862; 14.5
|26\7
1835; 3,4
|33\9
1800
|-
|-
!B, C
!0, E
!D
!A
!A
!44\11
!44\11, 2030.769
2030; 1.3
!32\8, 2021.053
!32\8
!52\13, 2012.903
 
!20\5, 2000
2021; 19
!48\12, 1986.207
!52\13
!28\7, 1976.471
2012; 1, 9.{{Overline|3}}
!36\9, 1963.636
!20\5
2000
!48\12
1986; 4.8{{Overline|3}}
!28\7
1976; 2.125
!36\9
1963.{{Overline|63}}
|-
|-
|B#, C#
|0#, E#
|D#
|A#
|A#
|45\11
|45\11, 2076.923
2076; 1.08{{Overline|3}}
|33\8, 2084.211
|33\8
|54\13, 2090.323
2084; 4.75
| rowspan="2" |21\5, 2100
|54\13
|51\12, 2110.345
2090; 3.1
|30\7, 2117.647
| rowspan="2" |21\5
|39\9, 2127.273
2100
|51\12
2110; 2.9
|30\7
2117; 1.{{Overline|54}}
|39\9
2127.{{Overline|27}}
|-
|-
|Cf, Qf
|1b, 1d
|Ef
|Bf
|Bf
|47\11
|47\11, 2169.231
2169; 4.{{Overline|3}}
|34\8, 2147.368
|34\8
|55\13, 2129.032
2147; 2, 1.4
|50\12, 2068.966
|55\13
|29\7, 2047.059
2129; 31
|37\9, 2018.182
|50\12
2068; 1, 28
|29\7
2047; 17
|37\9
2018.{{Overline|18}}
|-
|-
|'''C, Q'''
|'''1'''
|'''E'''
|'''B'''
|'''B'''
|'''48\11'''
|'''48\11,''' '''2215.385'''
'''2215; 2.6'''
|'''35\8,''' '''2210.526'''
|'''35\8'''
|'''57\13,''' '''2206.452'''
'''2210; 1.9'''
|'''22\5,''' '''2200'''
|'''57\13'''
|'''53\12,''' '''2193.103'''
'''2206; 2, 4.{{Overline|6}}'''
|'''31\7,''' '''2188.235'''
|'''22\5'''
|'''40\9,''' '''2181.818'''
'''2200'''
|'''53\12'''
'''2193; 9.{{Overline|6}}'''
|'''31\7'''
'''2188; 4.25'''
|'''40\9'''
'''2181.{{Overline|81}}'''
|-
|-
|C#, Q#
|1#
|E#
|B#
|B#
|49\11
|49\11, 2261.538
2261; 1, 1.1{{Overline|6}}
|36\8, 2273.684
|36\8
|59\13, 2283.871
2273; 1, 2.1{{Overline|6}}
| rowspan="2" |'''23\5,''' '''2300'''
|59\13
|56\12, 2317.241
2083; 1.{{Overline|148}}
|33\7, 2329.412
| rowspan="2" |'''23\5'''
|43\9, 2345.455
'''2300'''
|56\12
2327; 4, 7
|33\7
2329; 2, 2.{{Overline|3}}
|43\9
2345.{{Overline|45}}
|-
|-
|'''Qf, Df'''
|'''2b, 2d'''
|'''Ff'''
|'''Cf'''
|'''Cf'''
|'''51\11'''
|'''51\11,''' '''2353.846'''
'''2353; 1.{{Overline|18}}'''
|'''37\8,''' '''2336.842'''
|'''37\8'''
|'''61\13,''' '''2322.581'''
'''2336; 1.1875'''
|'''55\12,''' '''2275.864'''
|'''61\13'''
|'''32\7,''' '''2258.824'''
'''2322; 1.7{{Overline|2}}'''
|'''41\9,''' '''2236.364'''
|'''55\12'''
'''2275; 1.16'''
|'''32\7'''
'''2258; 1, 4.{{Overline|6}}'''
|'''41\9'''
'''2236.{{Overline|36}}'''
|-
|-
|Q, D
|2
|F
|C
|C
|52\11
|52\11, 2400
2400
|38\8, 2400
|38\8
|62\13, 2400
2400
|24\5, 2400
|62\13
|58\12, 2400
2400
|34\7, 2400
|24\5
|44\9, 2400
2400
|58\12
2400
|34\7
2400
|44\9
2400
|-
|-
|Q#, D#
|2#
|F#
|C#
|C#
|53\11
|53\11, 2446.154
2446; 6.5
| rowspan="2" |39\8, 2463.158
| rowspan="2" |39\8
|64\13, 2477.419
2463; 6.{{Overline|3}}
|25\5, 2500
|64\13
|61\12, 2524.138
2477; 2, 2.6
|36\7, 2541.176
|25\5
|47/9, 2563.636
2500
|61\12
2524; 7.25
|36\7
2541; 5.{{Overline|6}}
|47/9
2563.{{Overline|63}}
|-
|-
|Df, Sf
|3b, 3d
|1f
|Df
|Df
|54\11
|54\11, 2492.308
2492; 3.25
|63\13, 2438.710
|63\13
|24\5, 2400
2438; 1.1{{Overline|36}}
|57\12, 2358.621
|24\5
|33\7, 2329.412
2400
|42\9, 2390.909
|57\12
2358; 1.61̄
|33\7
2329; 2, 2.{{Overline|3}}
|42\9
2390.{{Overline|90}}
|-
|-
!D, S
!3
!1
!D
!D
!55\11
!55\11, 2538.462
2538; 2.1{{Overline|6}}
!40\8, 2526.316
!40\8
!65\13, 2516.129
2526; 3.1{{Overline|6}}
!25\5, 2500
!65\13
!60\12, 2482.759
2516; 7.75
!35\7, 2470.588
!25\5
!45\9, 2454.545
2500
!60\12
2482; '''1.3{{Overline|18}}'''
!35\7
2470; 1.7
!45\9
2454.{{Overline|54}}
|-
|-
|D#, S#
|3#
|1#
|D#
|D#
|56\11
|56\11, 2584.615
2584; 1.625
|41\8, 2589.474
|41\8
|67\13, 2593.548
2589; 2.
| rowspan="2" |26\5, 2600
|67\13
|63\12, 2606.897
2593; 1, 1, 4.{{Overline|6}}
|37\7, 2611.765
| rowspan="2" |26\5
|48\9, 2618.182
2600
|63\12
2606; 1, 8.{{Overline|6}}
|37\7
2611; 1, 3.25
|48\9
2618.{{Overline|18}}
|-
|-
|Ef
|Ef
|4b, 4d
|58\11, 2676.923
|2f
|42\8, 2652.632
|Ef
|69\13, 2670.968
|58\11
|62\12, 2565.517
2676; 1.08{{Overline|3}}
|36\7, 2541.176
|42\8
|46\9, 2509.091
2652; 1.58{{Overline|3}}
|69\13
2670; 1.0{{Overline|3}}
|62\12
2565; 1.9{{Overline|3}}
|36\7
2541; 5.{{Overline|6}}
|46\9
2509.{{Overline|09}}
|-
|-
|'''E'''
|'''E'''
|'''4'''
|'''59\11,''' '''2723.077'''
|'''2'''
|'''43\8,''' '''2715.789'''
|'''E'''
|'''70\13,''' '''2709.677'''
|'''59\11'''
|'''27\5,''' '''2700'''
'''2723; 13'''
|'''65\12,''' '''2689.655'''
|'''43\8'''
|'''38\7,''' '''2682.353'''
'''2715; 1.2{{Overline|6}}'''
|'''49\9,''' '''2672.727'''
|'''70\13'''
'''2709; 1, 2.1'''
|'''27\5'''
'''2700'''
|'''65\12'''
'''2689; 1, 1.9'''
|'''38\7'''
'''2682; 2.8{{Overline|3}}'''
|'''49\9'''
'''2672.{{Overline|72}}'''
|-
|-
|E#
|E#
|4#
|60\11, 2769.231
|2#
|44\8, 2778.947
|E#
|72\13, 2787.097
|60\11
| rowspan="2" |'''28\5,''' '''2800'''
 
|68\12, 2813.793
2769; 4.{{Overline|3}}
|40\7, 2823.529
|44\8
|52\9, 2836.364
2778; 1.05̄
|72\13
2787; 10.{{Overline|3}}
| rowspan="2" |'''28\5'''
'''2800'''
|68\12
2813; 1, 3.8{{Overline|3}}
|40\7
2823; 1.{{Overline|8}}
|52\9
2836.{{Overline|36}}
|-
|-
|'''Ff'''
|'''Ff'''
|'''5b, 5d'''
|'''62\11,''' '''2861.538'''
|'''3f'''
|'''45\8,''' '''2842.105'''
|'''Ff'''
|'''73\13,''' '''2825.806'''
|'''62\11'''
|'''67\12,''' '''2772.034'''
'''2861; 1, 1.1{{Overline|6}}'''
|'''39\7,''' '''2752.941'''
|'''45\8'''
|'''50\9,''' '''2727.273'''
'''2842; 9.5'''
|'''73\13'''
'''2825; 1.24'''
|'''67\12'''
'''2772; 29'''
|'''39\7'''
'''2752; 1.0625'''
|'''50\9'''
'''2727.{{Overline|27}}'''
|-
|-
|F
|F
|5
|63\11, 2907.692
|3
|46\8, 2905.263
|F
|75\13, 2903.226
|63\11
|29\5, 2900
2907; 1.{{Overline|4}}
|70\12, 2896.552
|46\8
|41\7, 2894.118
2905; 3.8
|53\9, 2890.909
|75\13
2903; 4, 2.
|29\5
2900
|70\12
2896; 1.8125
|41\7
2894; 8.5
|53\9
2890.{{Overline|90}}
|-
|-
|F#
|F#
|5#
|64\11, 2953.846
|3#
| rowspan="2" |47\8, 2968.421
|F#
|77\13, 2980.645
|64\11
|30\5, 3000
2953; 1.{{Overline|18}}
|73\12, 3020.690
| rowspan="2" |47\8
|43\7, 3035.294
2968; 2.375
|55\9, 3000
|77\13
2980; 1.55
|30\5
3000
|73\12
3020; 1.45
|43\7
3035; 3,4
|55\9
3000
|-
|-
|Gf
|6b, 6d
|4f
|0f
|0f
|65\11
|65\11, 3000
3000
|76\13, 2941.935
|76\13
|29\5, 2900
2941; 1, 14.5
|69\29, 2855.172
|29\5
|40\7, 2823.529
2900
|52\9, 2836.364
|69\29
2855; 5.8
|40\7
2823; 1.{{Overline|8}}
|52\9
2836.{{Overline|36}}
|-
|-
!G
!6
!4
!0
!0
!66\11
!66\11, 3046.154
3046; 6.5
!48\8, 30'''31.579'''
!48\8
!78\13, 30'''19.355'''
30'''31; 1.{{Overline|72}}'''
!30\5, 3000
!78\13
!72\12, 29'''79.310'''
30'''19; 2.{{Overline|81}}'''
!42\7, 2964.706
!30\5
!54\9, 2945.455
3000
!72\12
29'''79; 3.{{Overline|2}}'''
!42\7
2964; 1, 3.25
!54\9
2945.{{Overline|45}}
|}
|}
==Intervals==
==Intervals==
{| class="wikitable"
{| class="wikitable"
Line 1,352: Line 1,973:
|-
|-
|0
|0
|Do, Sol
|F/C/G ut
Do, Sol
 
د, ص
|perfect unison
|perfect unison
|0
|0
|Do, Sol
|F/C/G ut
Do, Sol
 
د, ص
|perfect fourth
|perfect fourth
|-
|-
|1
|1
|Mib, Sib
|A/E/B mib
Mib, Sib
 
صb, مb
|diminished third
|diminished third
| -1
| -1
|Re, La
|G/D/A re
Re, La
 
ر, ل
|perfect second
|perfect second
|-
|-
|2
|2
|Reb, Lab
|G/D/A reb
Reb, Lab
 
رb, لb
|diminished second
|diminished second
| -2
| -2
|Mi, Si
|A/E/B mi
Mi, Si
 
ص, م
|perfect third
|perfect third
|-
|-
Line 1,375: Line 2,014:
|-
|-
|3
|3
|Dob, Solb
|F/C/G utb
Dob, Solb
 
دb, صb
|diminished fourth
|diminished fourth
| -3
| -3
|Do#, Sol#
|F/C/G ut#
Do#, Sol#
 
د, #ص#
|augmented unison (chroma)
|augmented unison (chroma)
|-
|-
|4
|4
|Mibb, Sibb
|A/E/B mibb
Mibb, Sibb
 
مbb, صbb
|doubly diminished third
|doubly diminished third
| -4
| -4
|Re#, La#
|G/D/A re#
Re#, La#
 
ر ,# ل#
|augmented second
|augmented second
|}
|}
Line 1,391: Line 2,042:
The generator chain for this scale is as follows:
The generator chain for this scale is as follows:
{| class="wikitable"
{| class="wikitable"
|A/E/B mibb
|F/C/G utb
|G/D/A reb
|A/E/B mib
|F/C/G ut
|G/D/A re
|A/E/B mi
|F/C/G ut#
|G/D/A re#
|A/E/B mi#
|-
|Mibb
|Mibb
Sibb
Sibb
Line 1,411: Line 2,073:
|Mi#
|Mi#
Si#
Si#
|-
|مbb
تbb
|دb
صb
|رb
لb
|مb
تb
ص
ل
ت
|د#
ص#
|ر#
ل#
|م#
ت#
|-
|-
|dd3
|dd3
Line 1,450: Line 2,133:
|-
|-
|Phrygian
|Phrygian
|LsLL
|sLL
|<nowiki>0|2</nowiki>
|<nowiki>0|2</nowiki>
|d
|d
Line 1,466: Line 2,149:
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]


[[Optimal ET sequence]]: ~(5ed4/3, 8ed4/3, 13ed4/3)
[[Optimal ET sequence]]: [[15ed12/5]], [[24ed12/5]], [[39ed12/5]] ≈ [[5ed4/3]], [[8ed4/3]], [[13ed4/3]]
==='''Mahuric-Superpyth'''===
==='''Mahuric-Superpyth'''===
[[Subgroup]]: 4/3.9/7.3/2
[[Subgroup]]: 4/3.9/7.3/2
Line 1,476: Line 2,159:
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]


[[Optimal ET sequence]]: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3)
[[Optimal ET sequence]]: [[15ed7/3]], [[21ed7/3]], [[27ed7/3]], [[33ed7/3]] ≈ [[5ed4/3]], [[7ed4/3]], [[9ed4/3]], [[11ed4/3]]
====Scale tree====
====Scale tree====
The spectrum looks like this:
The spectrum looks like this:
{| class="wikitable"
{| class="wikitable"
! colspan="3" |Generator
!Generator
(bright)
(bright)
!Cents<ref name=":05" />
!Cents
!L
!L
!s
!s
Line 1,489: Line 2,172:
|-
|-
|1\3
|1\3
|
|171.429
|
|171; 2.{{Overline|3}}
|1
|1
|1
|1
Line 1,498: Line 2,179:
|-
|-
|6\17
|6\17
|
|180.000
|
|180
|6
|6
|5
|5
|1.200
|1.200
|
|-
|
|11\31
|
|180; 1.21{{Overline|6}}
|11
|9
|1.222
|
|
|-
|-
|5\14
|5\14
|
|181.818
|
|181.{{Overline|81}}
|5
|5
|4
|4
Line 1,524: Line 2,192:
|
|
|-
|-
|
|14\39
|14\39
|
|182.609
|182; 1, 1.5
|14
|14
|11
|11
Line 1,533: Line 2,199:
|
|
|-
|-
|
|9\25
|9\25
|
|183.051
|183; 19.{{Overline|6}}
|9
|9
|7
|7
Line 1,543: Line 2,207:
|-
|-
|4\11
|4\11
|
|184.615
|
|184; 1.625
|4
|4
|3
|3
Line 1,551: Line 2,213:
|
|
|-
|-
|
|15\41
|
|185; 1.7{{Overline|63}}
|15
|11
|1.364
|
|-
|
|11\30
|11\30
|
|185.915
|185, 1, 10.8{{Overline|3}}
|11
|11
|8
|8
Line 1,569: Line 2,220:
|
|
|-
|-
|
|7\19
|7\19
|
|186.667
|186.{{Overline|6}}
|7
|7
|5
|5
Line 1,578: Line 2,227:
|
|
|-
|-
|
|10\27
|10\27
|
|187.500
|187.5
|10
|10
|7
|7
Line 1,587: Line 2,234:
|
|
|-
|-
|
|13\35
|13\35
|
|187.952
|187; 1, 19.75
|13
|13
|9
|9
Line 1,596: Line 2,241:
|
|
|-
|-
|
|16\43
|16\43
|
|188.253
|188; 4.25
|16
|16
|11
|11
Line 1,606: Line 2,249:
|-
|-
|3\8
|3\8
|
|189.474
|
|189; 2.{{Overline|1}}
|3
|3
|2
|2
Line 1,614: Line 2,255:
|Mahuric-Meantone starts here
|Mahuric-Meantone starts here
|-
|-
|
|14\37
|14\37
|
|190.909
|190.{{Overline|90}}
|14
|14
|9
|9
Line 1,623: Line 2,262:
|
|
|-
|-
|
|11\29
|11\29
|
|191.304
|191; 3, 2.{{Overline|3}}
|11
|11
|7
|7
Line 1,632: Line 2,269:
|
|
|-
|-
|
|8\21
|8\21
|
|192.000
|192
|8
|8
|5
|5
Line 1,641: Line 2,276:
|
|
|-
|-
|
|5\13
|5\13
|
|193.548
|193; 1, 1, 4.{{Overline|6}}
|5
|5
|3
|3
Line 1,650: Line 2,283:
|
|
|-
|-
|
|
|12\31
|12\31
|194.{{Overline|594}}
|194.595
|12
|12
|7
|7
Line 1,659: Line 2,290:
|
|
|-
|-
|
|7\18
|7\18
|
|195.348
|195; 2.8{{Overline|6}}
|7
|7
|4
|4
Line 1,668: Line 2,297:
|
|
|-
|-
|
|9\23
|9\23
|
|196.364
|196.{{Overline|36}}
|9
|9
|5
|5
Line 1,677: Line 2,304:
|
|
|-
|-
|
|11\28
|11\28
|
|197.015
|197; 67
|11
|11
|6
|6
Line 1,686: Line 2,311:
|
|
|-
|-
|
|13\33
|13\33
|
|197.468
|197; 2.{{Overline|135}}
|13
|13
|7
|7
Line 1,695: Line 2,318:
|
|
|-
|-
|
|15\38
|15\38
|
|197.802
|197; 1, 2, 1, 1.{{Overline|54}}
|15
|15
|8
|8
Line 1,704: Line 2,325:
|
|
|-
|-
|
|17\43
|17\43
|
|198.058
|198; 17.1{{Overline|6}}
|17
|17
|9
|9
Line 1,713: Line 2,332:
|
|
|-
|-
|
|19\48
|19\48
|
|198.261
|198: 3, 1, 28
|19
|19
|10
|10
Line 1,722: Line 2,339:
|
|
|-
|-
|
|21\53
|21\53
|
|198.425
|198; 2.3{{Overline|518}}
|21
|21
|11
|11
Line 1,731: Line 2,346:
|
|
|-
|-
|
|23\58
|23\58
|
|198.561
|198; 1, 3, 1.7
|23
|23
|12
|12
Line 1,740: Line 2,353:
|
|
|-
|-
|
|25\63
|25\63
|
|198.675
|198; 1, 2, 12.25
|25
|25
|13
|13
Line 1,749: Line 2,360:
|
|
|-
|-
|
|27\68
|27\68
|
|198.773
|198; 1, 3.{{Overline|405}}
|27
|27
|14
|14
Line 1,758: Line 2,367:
|
|
|-
|-
|
|29\73
|29\73
|
|198.857
|198; 1, 1.1{{Overline|6}}
|29
|29
|15
|15
Line 1,767: Line 2,374:
|
|
|-
|-
|
|31\78
|31\78
|
|198.930
|198; 1, 12, 2.8
|31
|31
|16
|16
Line 1,776: Line 2,381:
|
|
|-
|-
|
|33\83
|33\83
|
|198.995
|198; 1.{{Overline|005}}
|33
|33
|17
|17
Line 1,785: Line 2,388:
|
|
|-
|-
|
|35\88
|35\88
|
|199.052
|199; 19.{{Overline|18}}
|35
|35
|18
|18
Line 1,795: Line 2,396:
|-
|-
|2\5
|2\5
|
|200.000
|
|200
|2
|2
|1
|1
Line 1,803: Line 2,402:
|Mahuric-Meantone ends, Mahuric-Pythagorean begins
|Mahuric-Meantone ends, Mahuric-Pythagorean begins
|-
|-
|
|17\42
|17\42
|
|201.980
|201.{{Overline|9801}}
|17
|17
|8
|8
Line 1,812: Line 2,409:
|
|
|-
|-
|
|15\37
|15\37
|
|202.247
|202; 4.0{{Overline|45}}
|15
|15
|7
|7
Line 1,821: Line 2,416:
|
|
|-
|-
|
|13\32
|13\32
|
|202.597
|202; 1, 1, 2.0{{Overline|6}}
|13
|13
|6
|6
Line 1,830: Line 2,423:
|
|
|-
|-
|
|11\27
|11\27
|
|203.077
|203; 13
|11
|11
|5
|5
Line 1,839: Line 2,430:
|
|
|-
|-
|
|9\22
|9\22
|
|203.774
|203; 1, 3.41{{Overline|6}}
|9
|9
|4
|4
Line 1,848: Line 2,437:
|
|
|-
|-
|
|7\17
|7\17
|
|204.878
|204; 1. 7.2
|7
|7
|3
|3
Line 1,857: Line 2,444:
|
|
|-
|-
|
|
|12\29
|12\29
|205; 1.4
|205.714
|12
|12
|5
|5
Line 1,866: Line 2,451:
|
|
|-
|-
|
|5\12
|5\12
|
|206.897
|206; 1, 8.{{Overline|6}}
|5
|5
|2
|2
Line 1,875: Line 2,458:
|Mahuric-Neogothic heartland is from here…
|Mahuric-Neogothic heartland is from here…
|-
|-
|
|
|18\43
|18\43
|207; 1.{{Overline|4}}
|207.693
|18
|18
|7
|7
Line 1,884: Line 2,465:
|
|
|-
|-
|
|
|13\31
|13\31
|208
|208.000
|13
|13
|5
|5
Line 1,893: Line 2,472:
|
|
|-
|-
|
|8\19
|8\19
|
|208.696
|208; 1.4375
|8
|8
|3
|3
Line 1,902: Line 2,479:
|…to here
|…to here
|-
|-
|
|11\26
|11\26
|
|209.524
|209; 1.{{Overline|90}}
|11
|11
|4
|4
Line 1,911: Line 2,486:
|
|
|-
|-
|
|14\33
|14\33
|
|210.000
|210
|14
|14
|5
|5
Line 1,921: Line 2,494:
|-
|-
|3\7
|3\7
|
|211.755
|
|211; 1, 3.25
|3
|3
|1
|1
Line 1,929: Line 2,500:
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins
|-
|-
|
|22\51
|22\51
|
|212.903
|212; 1, 9.{{Overline|3}}
|22
|22
|7
|7
Line 1,938: Line 2,507:
|
|
|-
|-
|
|19\44
|19\44
|
|213.084
|213; 11.{{Overline|8}}
|19
|19
|6
|6
Line 1,947: Line 2,514:
|
|
|-
|-
|
|16\37
|16\37
|
|213.333
|213.
|16
|16
|5
|5
Line 1,956: Line 2,521:
|
|
|-
|-
|
|13\30
|13\30
|
|213.699
|213; 1, 2.3{{Overline|18}}
|13
|13
|4
|4
Line 1,965: Line 2,528:
|
|
|-
|-
|
|10\23
|10\23
|
|214.286
|214; 3.5
|10
|10
|3
|3
Line 1,974: Line 2,535:
|
|
|-
|-
|
|7\16
|7\16
|
|215.385
|215; 2.6
|7
|7
|2
|2
Line 1,983: Line 2,542:
|
|
|-
|-
|
|11\25
|11\25
|
|216.393
|216; 2.541{{Overline|6}}
|11
|11
|3
|3
Line 1,992: Line 2,549:
|
|
|-
|-
|
|15\34
|15\34
|
|216.867
|216; 1.152{{Overline|7}}
|15
|15
|4
|4
Line 2,001: Line 2,556:
|
|
|-
|-
|
|19\43
|19\43
|
|217.143
|217; 7
|19
|19
|5
|5
Line 2,011: Line 2,564:
|-
|-
|4\9
|4\9
|
|218.182
|
|218.{{Overline|18}}
|4
|4
|1
|1
Line 2,019: Line 2,570:
|
|
|-
|-
|
|13\29
|13\29
|
|219.718
|219; 1, 2.55
|13
|13
|3
|3
Line 2,028: Line 2,577:
|
|
|-
|-
|
|9\20
|9\20
|
|220.408
|220; 2.45
|9
|9
|2
|2
Line 2,037: Line 2,584:
|
|
|-
|-
|
|14\31
|14\31
|
|221.053
|221; 19
|14
|14
|3
|3
Line 2,047: Line 2,592:
|-
|-
|5\11
|5\11
|
|222.222
|
|222.{{Overline|2}}
|5
|5
|1
|1
Line 2,055: Line 2,598:
|Mahuric-Superpyth ends
|Mahuric-Superpyth ends
|-
|-
|
|11\24
|11\24
|
|223.728
|223; 1, 2.6875
|11
|11
|2
|2
Line 2,064: Line 2,605:
|
|
|-
|-
|
|17\37
|17\37
|
|224.176
|224; 5.7{{Overline|2}}
|17
|17
|3
|3
Line 2,074: Line 2,613:
|-
|-
|6\13
|6\13
|
|225.000
|
|225
|6
|6
|1
|1
Line 2,082: Line 2,619:
|
|
|-
|-
|1\3
|1\2
|
|240.000
|
|240
|1
|1
|0
|0
Line 2,092: Line 2,627:
|}
|}


== See also ==
==See also==
[[2L 1s (4/3-equivalent)]] - idealized tuning
[[2L 1s (4/3-equivalent)]] - idealized tuning


[[4L 2s (7/4-equivalent)]] - Mixolydian Archytas temperament  
[[4L 2s (7/4-equivalent)]] - Mixolydian and Dorian hexatonic Archytas temperament  


[[4L 2s (39/22-equivalent)]] - Mixolydian Neogothic temperament  
[[4L 2s (39/22-equivalent)]] - Mixolydian and Dorian hexatonic Neogothic temperament  


[[4L 2s (9/5-equivalent)]] - Mixolydian Meantone temperament  
[[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian and Dorian hexatonic Komornik–Loreti temperament
 
[[4L 2s (9/5-equivalent)]] - Mixolydian and Dorian hexatonic Meantone temperament  


[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament
Line 2,109: Line 2,646:
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament


[[8L 4s (22/7-equivalent)]] - Bijou Neogothic temperament
[[8L 4s (22/7-equivalent)]] and [[8L 4s (π-equivalent)|8L 4s ([math]π[/math]-equivalent)]] - Bijou Neogothic temperament


[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament
[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament
Line 2,117: Line 2,654:
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament


[[10L 5s (30/7-equivalent)]] - Hyperionic Meantone temperament
[[10L 5s (64/15-equivalent)]] - Hyperionic Meantone temperament
 
[[10L 5s (30/7-equivalent)]] - Hyperionic septimal Meantone temperament
 
[[12L 6s (16/3-equivalent)]] - Warped Pythagorean Subsextal temperament
 
[[12L 6s (343/64-equivalent)]] - 1/2 comma Archytas Subsextal temperament]


[[12L 6s (11/2-equivalent)]] - Low undecimal Subsextal temperament  
[[12L 6s (11/2-equivalent)]] - Low undecimal Subsextal temperament  


[[12L 6s (28/5-equivalent)]] - Low septimal Subsextal temperament  
[[12L 6s (448/81-equivalent)]] - 1/6 comma Archytas Subsextal temperament
 
[[12L 6s (4096/729-equivalent)]] - Pythagorean Subsextal temperament
 
[[12L 6s (28/5-equivalent)]] - Low septimal (meantone) Subsextal temperament
 
[[12L 6s (45/16-equivalent)|12L 6s (256/45-equivalent)]] - 1/6 comma meantone Subsextal temperament
 
[[12L 6s (40/7-equivalent)]] - High septimal Subsextal temperament  


[[12L 6s (80/7-equivalent)]] - High septimal Subsextal temperament  
[[12L 6s (64/11-equivalent)]] - High undecimal Subsextal temperament  


[[12L 6s (64/11-equivalent)]] - High undecimal Subsextal temperament <references />
[[12L 6s (729/125-equivalent)]] - 1/2 comma meantone Subsextal temperament <references />