User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions

 
(36 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''2L 1s<fourth>''', is a fourth-repeating MOS scale. The notation "<fourth>" means the period of the MOS is a fourth, disambiguating it from octave-repeating [[2L 1s]].
'''2L 1s<perfect fourth>''', is a perfect fourth-repeating MOS scale. The notation "<perfect fourth>" means the period of the MOS is a perfect fourth, disambiguating it from octave-repeating [[2L 1s]].


The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).  
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).  


In the fourth-repeating version of the diatonic scale, each tone has a 4/3 perfect fourth above it. The scale has one major chord and two minor chords.  
In the fourth-repeating version of the diatonic scale, each tone has a perfect fourth above it. The scale has one major chord and two minor chords.  


[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]].
[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]].
==Notation==
==Notation==
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s] or a minor sixteenth which is the Phrygian mode of Hyperionic. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth and 15 in quintuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal or hex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 with flats written F molle) may be used.
There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4 and a fourth has too few notes for a structure analogous to the major scale, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
{| class="wikitable"
{| class="wikitable"
|+Cents<ref name=":05">Fractions repeating more than 4 digits written as continued fractions</ref>
|+Cents
! colspan="5" |Notation
!Notation
!Supersoft
!Supersoft
!Soft
!Soft
Line 19: Line 19:
!Superhard
!Superhard
|-
|-
! colspan="2" |Diatonic
!Fourth
! rowspan="2" |Mahur
!~11ed4/3
! rowspan="2" |Bijou
!~8ed4/3
! rowspan="2" |Hyperionic
!~13ed4/3
! rowspan="2" |~11ed4/3
!~5ed4/3
! rowspan="2" |~8ed4/3
!~12ed4/3
! rowspan="2" |~13ed4/3
!~7ed4\3
! rowspan="2" |~5ed4/3
!~9ed4/3
! rowspan="2" |~12ed4/3
|-
! rowspan="2" |~7ed4\3
|F/C/G ut#
! rowspan="2" |~9ed4/3
Do#, Sol#
 
د#,
 
ص#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
| G/D/A reb
Reb, Lab
 
رb, لb
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''G/D/A re'''
'''Re, La'''
 
'''ر, ل'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|G/D/A re#
Re#, La#
 
ر,# ل#
|5\11, 230.769
| rowspan="2" |4\8, 252.632
|7\13, 270.967
|3\5, 300
| 8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|A/E/B mibb
Mibb, Sibb
 
مbb,تbb
|6\11, 276.923
|6\13, 232.258
|2\5, 200
|4\12, 165.517
|2\7, 141.176
|2\9, 109.091
|-
|'''A/E/B mib'''
'''Mib, Sib'''
 
'''مb,تb'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''3\5,''' '''300'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|A/E/B mi
Mi, Si
 
م, ت
|8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|A/E/B mi#
Mi#, Si#
 
م,#ت#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|F/C/G utb
Dob, Solb
 
دb,
 
صb
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!F/C/G ut
Do, Sol
 
د, ص
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|}
 
{| class="wikitable"
|+Cents
! colspan="2" |Notation
!Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
! colspan="2" |Seventh
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
!Mixolydian
!Dorian
!
!
!
!
!
!
!
|-
| F/C/G ut#
Sol#
 
ص#
|G/D/A re#
Re#
 
ر#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
| 3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|-
!Fourth
|G/D/A reb
!Seventh
Lab
 
لb
|A/E/B mib
Mib
 
مb
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''G/D/A re'''
'''La'''
 
ل
|'''A/E/B mi'''
'''Mi'''
 
م
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|G/D/A re#
La#
 
ل#
| A/E/B mi#
Mi#
 
م#
|5\11, 230.769
| rowspan="2" |4\8, 252.632
| 7\13, 270.967
|3\5, 300
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|A/E/B mibb
Sibb
 
تbb
|B/F/C fab
Fab
 
فb
|6\11, 276.923
|6\13, 232.258
|2\5, 200
|4\12, 165.517
|2\7, 141.176
|2\9, 109.091
|-
|'''A/E/B mib'''
'''Sib'''
 
تb
|'''B/F/C fa'''
'''Fa'''
 
'''ف'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''3\5,''' '''300'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|A/E/B mi
Si
 
ت
|B/F/C fa#
Fa#
 
ف#
| 8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|A/E/B mi#
Si#
 
ت#
|B/F/C fax
Fax
 
فx
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
| B/F/C fab
Dob
 
دb
|C/G/D solb
Solb
 
صb
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!B/F/C fa
Do
 
د
!C/G/D sol
Sol
 
ص
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|B/F/C fa#
Do#
 
د#
| C/G/D sol#
Sol#
 
ص#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
|9\7, 635.294
|12\9, 654.545
|-
|C/G/D solb
Reb
 
رb
|D/A/E lab
Lab
 
لb
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
|10\9, 545.455
|-
|'''C/G/D sol'''
'''Re'''
 
ر
|'''D/A/E la'''
'''La'''
 
ل
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|C/G/D sol#
Re#
 
د#
|D/A/E la#
La#
 
ل#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.294
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|'''D/A/E lab'''
'''Mib'''
 
مb
|'''E/B/F síb'''
'''Sib'''
 
تb
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|D/A/E la
Mi
 
م
|E/B/F sí
Si
 
ت
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
|17\9, 927.727
|-
|D/A/E la#
Mi#
 
م#
|E/B/F sí#
Si#
 
ت#
|20\11, 923.077
| rowspan="2" |15\8, 947.378
|25\13, 967.742
|10\5, 1000
|25\12, 1034.483
|15\7, 1058.824
|20\9, 1090.909
|-
|F/C/G utb
Solb
 
صb
|G/D/A reb
Reb
 
رb
|21\11, 969.231
|24\13, 929.033
|9\5, 900
|21\12, 868.966
|11\7, 776.471
|15\9, 818.182
|-
!F/C/G ut
Sol
 
ص
!G/D/A re
Re
 
ر
!22\11, 1015.385
! 16\8, 1010.526
! 26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
!18\9, 981.818
|}
{| class="wikitable"
!Notation
!Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Mahur
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
! ~9ed4/3
|-
|-
|Do#, Sol#
|Sol#
|G#
|G#
|0#, D#
|1\11, 46.154
|1#
|1\8, 63.158
|1\11
|2\13, 77.419
46; 6.5
| rowspan="2" |1\5, 100
|1\8
|3\12, 124.138
63; 6.{{Overline|3}}
|2\7, 141.176
|2\13
|3\9, 163.636
77; 2, 2.6
| rowspan="2" |1\5
100
|3\12
124; 7.25
|2\7
141; 5.{{Overline|6}}
|3\9
163.{{Overline|63}}
|-
|-
|Reb, Lab
|Lab
|Jf, Af
|Jf, Af
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''J, A'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
| J#, A#
|5\11, 230.769
|4\8, 252.632
|7\13, 270.968
| rowspan="2" |'''3\5,''' '''300'''
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|'''Af, Bf'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|A, B
|8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|A#, B#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|Bb, Cf
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!B, C
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|B#, C#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
| 9\7, 635.294
| 12\9, 654.545
|-
|Cf, Qf
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
| 10\9, 545.455
|-
|'''C, Q'''
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|C#, Q#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.194
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|'''Qf, Df'''
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|Q, D
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
| 17\9, 927.727
|-
|Q#, D#
|20\11, 923.077
| rowspan="2" |15\8, 947.368
|25\13, 967.742
| 10\5, 1000
|25\12, 1034.483
| 15\7, 1058.824
| 20\9, 1090.909
|-
|Df, Sf
| 21\11, 969.231
|24\13, 929.033
|9\5, 900
|21\12, 868.966
|11\7, 776.471
|15\9, 818.182
|-
!D, S
!22\11, 1015.385
!16\8, 1010.526
!26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
!18\9, 981.818
|-
|D#, S#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|Ef
|25\11, 1153.846
|18\8, 1136.842
|29\13, 1122.581
|26\12, 1075.862
|15\7, 1058.824
|19\9, 1036.364
|-
|'''E'''
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''31\13,''' '''1200'''
|'''12\5,''' '''1200'''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|E#
|27\11, 1246.154
|20\8, 1263.158
|33\13, 1277.419
| rowspan="2" |'''13\5,''' '''1300'''
|32\12, 1324.138
|19\7, 1341.176
|25\9, 1363.636
|-
|'''Ff'''
|'''29\11,''' '''1338.462'''
|'''21\8,''' '''1326.316'''
|'''34\13,''' '''1316.129'''
|'''31\12,''' '''1282.759'''
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.545'''
|-
|F
|30\11, 1384.615
|22\8, 1389.474
|36\13, 1393.548
|14\5, 1400
|34\12, 1406.897
|20\7, 1411.765
| 26\9, 1418.182
|-
|F#
|31\11, 1430.769
| rowspan="2" |23\8, 1452.632
|38\13, 1470.968
|15\5, 1500
|37\12, 1531.034
|22\7, 1552.941
| 29\9, 1581.818
|-
|Gf
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!G
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|}
{| class="wikitable"
!Notation
! Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Bijou
!~11ed4/3
! ~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
|0#, E#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
| 3\9, 163.636
|-
|1b, 1d
|1b, 1d
|2f
|3\11, 138.462
|3\11
|2\8, 126.316
138; 3.25
|3\13, 116.129
|2\8
| 2\12, 82.759
126; 3.1{{Overline|6}}
|1\7, 70.588
|3\13
|1\9, 54.545
116; 7.75
|2\12
82; 1.3{{Overline|18}}
|1\7
70; 1.7
|1\9
54.{{Overline|54}}
|-
|-
|'''Re, La'''
|'''La'''
|'''J, A'''
|'''1'''
|'''1'''
|'''2'''
|'''4\11,''' '''184.615'''
|'''4\11'''
|'''3\8,''' '''189.474'''
'''184; 1.625'''
|'''5\13,''' '''193.548'''
|'''3\8'''
|'''2\5,''' '''200'''
'''189; 2.{{Overline|1}}'''
|'''5\12,''' '''206.897'''
|'''5\13'''
|'''3\7,''' '''211.765'''
'''193; 1, 1, 4.{{Overline|6}}'''
|'''4\9,''' '''218.182'''
|'''2\5'''
'''200'''
|'''5\12'''
'''206; 1, 8.{{Overline|6}}'''
|'''3\7'''
'''211; 1, 3.25'''
|'''4\9'''
'''218.{{Overline|18}}'''
|-
|-
|Re#, La#
|La#
|J#, A#
|1#
|1#
|2#
|5\11, 230.769
|5\11
|4\8, 252.632
230; 1.3
|7\13, 270.968
|4\8
| rowspan="2" |'''3\5,''' '''300'''
252; 1.58{{Overline|3}}
|8\12, 331.034
|7\13
|5\7, 352.941
270; 1.0{{Overline|3}}
|7\9, 381.818
| rowspan="2" |'''3\5'''
'''300'''
|8\12
331; 29
|5\7
352; 1.0625
|7\9
381.{{Overline|81}}
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Af, Bf'''
|'''2b, 2d'''
|'''2b, 2d'''
|'''3f'''
|'''7\11,''' '''323.077'''
|'''7\11'''
|'''5\8,''' '''315.789'''
'''323; 13'''
|'''8\13,''' '''309.677'''
|'''5\8'''
|'''7\12,''' '''289.655'''
'''315; 1.2{{Overline|6}}'''
|'''4\7,''' '''282.353'''
|'''8\13'''
|'''5\9,''' '''272.727'''
'''309; 1, 2.1'''
|'''7\12'''
'''289; 1, 1.9'''
|'''4\7'''
'''282; 2.8{{Overline|3}}'''
|'''5\9'''
'''272.{{Overline|72}}'''
|-
|-
|Mi, Si
|Si
|A, B
|2
|2
|3
|8\11, 369.231
|8\11
|6\8, 378.947
369; 4.{{Overline|3}}
|10\13, 387.097
|6\8
|4\5, 400
378; 1.0{{Overline|5}}
|10\12, 413.793
|10\13
|6\7, 423.529
387; 10.{{Overline|3}}
|8\9, 436.364
|4\5
400
|10\12
413; 1, 3.8{{Overline|3}}
|6\7
423; 1.{{Overline|8}}
|8\9
436.{{Overline|36}}
|-
|-
|Mi#, Si#
|Si#
|A#, B#
|2#
|2#
|3#
|9\11, 415.385
|9\11
| rowspan="2" |7\8, 442.105
415; 2.6
|12\13, 464.516
| rowspan="2" |7\8
|5\5, 500
442; 9.5
|13\12, 537.069
|12\13
|8\7, 564.705
464; 1.9375
|11\9, 600
|5\5
500
|13\12
537; 14.5
|8\7
564; 1.41{{Overline|6}}
|11\9
600
|-
|-
|Dob, Solb
|Dob
|Bb, Cf
|3b, 3d
|3b, 3d
|4f
|10\11, 461.538
|10\11
|11\13, 425.806
461; 1, 1.1{{Overline|6}}
|4\5, 400
|11\13
|9\12, 372.414
425; 1.24
|5\7, 352.941
|4\5
|6\9, 327.273
400
|9\12
372; 2.41{{Overline|6}}
|5\7
352; 1.0625
|6\9
327.{{Overline|27}}
|-
|-
!Do, Sol
!Do
!B, C
!3
!3
!4
!'''11\11,''' '''507.692'''
!'''11\11'''
!'''8\8,''' '''505.263'''
'''507; 1.{{Overline|4}}'''
!'''13\13,''' '''503.226'''
!'''8\8'''
!5\5, 500
'''505; 3.8'''
!'''12\12,''' '''496.552'''
!'''13\13'''
!'''7\7,''' '''494.118'''
'''503; 4, 2.{{Overline|3}}'''
!'''9\9,''' '''490.909'''
!'''5\5'''
'''500'''
!'''12\12'''
'''496; 1.8125'''
!'''7\7'''
'''494; 8.5'''
!'''9\9'''
'''490.{{Overline|90}}'''
|-
|-
|Do#, Sol#
|Do#
|B#, C#
|3#
|3#
|4#
|12\11, 553.846
|12\11
|9\8, 568.421
553; 1.{{Overline|18}}
|15\13, 580.645
|9\8
| rowspan="2" |6\5, 600
568; 2.375
|15\12, 620.690
|15\13
|9\7, 635.294
580; 1.55
|12\9, 654.545
| rowspan="2" |6\5
600
|15\12
620; 1.45
|9\7
635; 3.4
|12\9
654.{{Overline|54}}
|-
|-
|Reb, Lab
|Reb
|Cf, Qf
|4b, 4d
|4b, 4d
|5f
|14\11, 646.154
|14\11
|10\8, 631.579
646; 6.5
|16\13, 619.355
|10\8
|14\12, 579.310
631; 1.{{Overline|72}}
|8\7, 564.706
|16\13
|10\9, 545.455
619; 2.{{Overline|81}}
|14\12
579; 3.{{Overline|2}}
|8\7
564; 1.41{{Overline|6}}
|10\9
545.{{Overline|45}}
|-
|-
|'''Re, La'''
|'''Re'''
|'''C, Q'''
|'''4'''
|'''4'''
|'''5'''
|'''15\11,''' '''692.308'''
|'''15\11'''
|'''11\8''' '''694.737'''
'''692; 3.25'''
|'''18\13,''' '''696.774'''
|'''11\8'''
|'''7\5,''' '''700'''
'''694; 1, 2.8'''
|'''17\12,''' '''703.448'''
|'''18\13'''
|'''10\7,''' '''705.882'''
'''696; 1.291{{Overline|6}}'''
|'''13\9,''' '''709.091'''
|'''7\5'''
'''700'''
|'''17\12'''
'''703; 2, 2.1{{Overline|6}}'''
|'''10\7'''
'''705; 1.1{{Overline|3}}'''
|'''13\9'''
'''709.{{Overline|09}}'''
|-
|-
|Re#, La#
|Re#
|C#, Q#
|4#
|4#
|5#
|16\11, 738.462
|16\11
|12\8, 757.895
738; 2.1{{Overline|6}}
|20\13, 774.194
|12\8
| rowspan="2" |'''8\5,''' '''800'''
757; 1, 8.5
|20\12, 827.586
|20\13
|12\7, 847.059
774; 5.1{{Overline|6}}
|16\9, 872.727
| rowspan="2" |'''8\5'''
'''800'''
|20\12
827; 1, 1.41{{Overline|6}}
|12\7
847; 17
|16\9
872.{{Overline|72}}
|-
|-
|'''Mib, Sib'''
|'''Mib'''
|'''Qf, Df'''
|'''5b, 5d'''
|'''5b, 5d'''
|'''6f'''
|'''18\11,''' '''830.769'''
|'''18\11'''
|'''13\8,''' '''821.053'''
'''830; 1.3'''
|'''21\13,''' '''812.903'''
|'''13\8'''
|'''19\12,''' '''786.207'''
'''821; 19'''
|'''11\7,''' '''776.471'''
|'''21\13'''
|'''14\9,''' '''763.636'''
'''812; 1, 9.{{Overline|3}}'''
|'''19\12'''
'''786; 4.8{{Overline|3}}'''
|'''11\7'''
'''776; 2.125'''
|'''14\9'''
'''763.{{Overline|63}}'''
|-
|-
|Mi, Si
|Mi
|Q, D
|5
|5
|6
|19\11, 876.923
|19\11
|14\8, 884.211
876; 1.08{{Overline|3}}
|23\13, 890.323
|14\8
|9\5, 900
884; 4.75
|22\12, 910.345
|23\13
|13\7, 917.647
890; 3.1
|17\9, 927.727
|9\5
900
|22\12
910; 2.9
|13\7
917; 1.{{Overline|54}}
|17\9
927.{{Overline|27}}
|-
|-
|Mi#, Si#
|Mi#
|Q#, D#
|5#
|5#
|6#
|20\11, 923.077
|20\11
| rowspan="2" |15\8, 947.368
923: 13
|25\13, 967.742
| rowspan="2" |15\8
|10\5, 1000
947; 2, 1.4
|25\12, 1034.483
|25\13
|15\7, 1058.824
967; 1, 2.875
|20\9, 1090.909
|10\5
1000
|25\12
1034; 2, 14
|15\7
1058; 1, 4.{{Overline|6}}
|20\9
1090.{{Overline|90}}
|-
|-
|Dob, Solb
|Solb
|Df, Sf
|6b, 6d
|6b, 6d
|7f
|21\11, 969.231
|21\11
|24\13, 929.033
969; 4.{{Overline|3}}
| 9\5, 900
|24\13
|21\12, 868.966
929; 31
|11\7, 776.471
|9\5
|15\9, 818.182
900
|21\12
868; 1, 28
|11\7
776; 2.125
|15\9
818.{{Overline|18}}
|-
|-
!Do, Sol
!Sol
!D, S
!6
!6
!7
!22\11, 1015.385
!22\11
!16\8, 1010.526
1015; 2.6
!26\13, 1006.452
!16\8
!10\5, 1000
1010; 1.9
!24\12, 993.103
!26\13
!14\7, 988.235
1006; 2, 4.{{Overline|6}}
!18\9, 981.818
!10\5
1000
!24\12
993; 9.{{Overline|6}}
!14\7
988; 4.25
!18\9
981.{{Overline|81}}
|-
|-
|Do#, Sol#
|Sol#
|D#, S#
|6#
|6#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|7b, 7d
| 25\11, 1153.846
|18\8, 1136.842
|29\13, 1122.581
|26\12, 1075.862
|15\7, 1058.824
|19\9, 1036.364
|-
|'''7'''
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''31\13,''' '''1200'''
|'''12\5,''' '''1200'''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|7#
|7#
|23\11
|27\11, 1246.154
1061; 1, 1.1{{Overline|6}}
|20\8, 1263.158
|17\8
|33\13, 1277.419
1073; 1, 2.1{{Overline|6}}
| rowspan="2" |'''13\5,''' '''1300'''
|28\13
|32\12, 1324.138
1083; 1.{{Overline|148}}
|19\7, 1341.176
| rowspan="2" |11\5
|25\9, 1363.636
1100
|-
|27\12
|'''8b, Gd'''
1117; 4, 7
|'''29\11,''' '''1338.462'''
|16\7
|'''21\8,''' '''1326.316'''
1129; 2, 2.{{Overline|3}}
|'''34\13,''' '''1316.129'''
|24\9
|'''31\12,''' '''1282.759'''
1309.{{Overline|09}}
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.545'''
|-
|8, G
|30\11, 1384.615
|22\8, 1389.474
|36\13, 1393.548
|14\5, 1400
|34\12, 1406.897
|20\7, 1411.765
|26\9, 1418.182
|-
|8#, G#
|31\11, 1430.769
| rowspan="2" |23\8, 1452.632
|38\13, 1470.968
|15\5, 1500
|37\12, 1531.034
|22\7, 1552.941
| 29\9, 1581.818
|-
|9b, Ad
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!'''9, A'''
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|-
|9#, A#
|34\11, 1569.231
| 25\8, 1578.947
|41\13, 1587.097
| rowspan="2" |16\5, 1600
|39\12, 1613.793
|23\7, 1623.529
|30\9, 1636.364
|-
|Xb, Bd
|36\11, 1661.538
|26\8, 1642.105
|42\13, 1625.806
|38\12, 1572.034
| 22\7, 1552.941
|28\9, 1527.{{Overline|27}}
|-
|'''X, B'''
|'''37\11,''' '''1707.692'''
|'''27\8,''' '''1705.263'''
|'''44\13,''' '''1703.226'''
|'''17\5,''' '''1700'''
|'''41\12,''' '''1696.552'''
|'''24\7,''' '''1694.118'''
|'''31\9,''' '''1690.909'''
|-
|X#, B#
|38\11, 1753.846
|28\8, 1768.421
|46\13, 1780.645
| rowspan="2" |'''18\5,''' '''1800'''
|44\12, 1820.690
|26\7, 1835.294
|34\9, 1854.545
|-
|'''Eb, Dd'''
|'''40\11,''' '''1846.154'''
|'''29\8,''' '''1831.579'''
|'''47\13,''' '''1819.355'''
|'''43\12,''' '''1779.310'''
|'''25\7,''' '''1764.706'''
|'''32\9,''' '''1745.455'''
|-
|E, D
|41\11, 1892.308
|30\8, 1894.737
|49\13, 1896.774
|19\5, 1900
|46\12, 1903.448
|27\7, 1905.882
|35\9, 1909.090
|-
|E#, D#
|42\11, 1938.462
| rowspan="2" |31\8, 1957.895
|51\13, 1974.194
|20\5, 2000
|49\12, 2027.586
|29\7, 2047.059
|38\9, 2072.727
|-
|0b, Ed
|43\11, 1984.615
|50\13, 1935.484
|19\5, 1900
|45\12, 1862.069
|26\7, 1835.294
|33\9, 1800
|-
!0, E
!44\11, 2030.769
!32\8, 2021.053
!52\13, 2012.903
!20\5, 2000
!48\12, 1986.207
!28\7, 1976.471
!36\9, 1963.636
|}
{| class="wikitable"
! Notation
!Supersoft
! Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Hyperionic
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
|1#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|2f
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
| 1\7, 70.588
|1\9, 54.545
|-
|'''2'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|2#
| 5\11, 230.769
|4\8, 252.632
|7\13, 270.967
| rowspan="2" |'''3\5,''' '''300'''
| 8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|'''3f'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|3
|8\11, 369.231
|6\8, 378.947
|10\13, 387.098
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|3#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|4f
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!4
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|4#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
|9\7, 635.294
|12\9, 654.545
|-
|5f
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
|10\9, 545.455
|-
|'''5'''
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|5#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.194
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|'''6f'''
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|6
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
|17\9, 927.727
|-
|6#
|20\11, 923.077
| rowspan="2" |15\8, 947.368
|25\13, 967.742
|10\5, 1000
| 25\12, 1034.483
|15\7, 1058.824
|20\9, 1090.909
|-
|7f
|21\11, 969.231
|24\13, 929.032
|9\5, 900
|21\12, 868.966
| 11\7, 776.471
|15\9, 818.182
|-
!7
!22\11, 1015.385
!16\8, 1010.526
!26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
! 18\9, 981.818
|-
| 7#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|-
|Reb, Lab
|Lab
|Ef
|7b, 7d
|8f
|8f
|25\11
|25\11, 1153.846
1153; 1.{{Overline|18}}
|18\8, 1136.842
|18\8
|29\13, 1122.581
1136; 1.1875
|26\12, 1075.862
|29\13
|15\7, 1058.824
1122; 1.7{{Overline|2}}
|19\9, 1036.364
|26\12
1075; 1.16
|15\7
1058; 1, 4.{{Overline|6}}
|19\9
1036.{{Overline|36}}
|-
|-
|'''Re, La'''
|'''La'''
|'''E'''
|'''7'''
|'''8'''
|'''8'''
|'''26\11'''
|'''26\11,''' '''1200'''
'''1200'''
|'''19\8,''' '''1200'''
|'''19\8'''
|'''31\13,''' '''1200'''
'''1200'''
|'''12\5,''' '''1200'''
|'''31\13'''
|'''29\12,''' '''1200'''
'''1200'''
|'''17\7,''' '''1200'''
|'''12\5'''
|'''22\9,''' '''1200'''
'''1200'''
|'''29\12'''
'''1200'''
|'''17\7'''
'''1200'''
|'''22\9'''
'''1200'''
|-
|-
|Re#, La#
|La#
|E#
|7#
|8#
|8#
|27\11
|27\11, 1246.154
1246; 6,5
|20\8, 1263.158
|20\8
|33\13, 1277.419
1263; 6.{{Overline|3}}
| rowspan="2" |'''13\5,''' '''1300'''
|33\13
|32\12, 1324.138
1277; 2, 2.6
|19\7, 1341.176
| rowspan="2" |'''13\5'''
|25\9, 1363.636
'''1300'''
|32\12
1324; 7.25
|19\7
1341; 5.{{Overline|6}}
|25\9
1363.{{Overline|63}}
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Ff'''
|'''8b, Fd'''
|'''9f'''
|'''9f'''
|'''29\11'''
|'''29\11,''' '''1338.462'''
'''1338; 3.25'''
|'''21\8,''' '''1326.316'''
|'''21\8'''
|'''34\13,''' '''1316.129'''
'''1326; 3.16̄'''
|'''31\12,''' '''1282.759'''
|'''34\13'''
|'''18\7,''' '''1270.588'''
'''1316; 7.75'''
|'''23\9,''' '''1254.545'''
|'''31\12'''
'''1282; 1.3{{Overline|18}}'''
|'''18\7'''
'''1270; 1.7'''
|'''23\9'''
'''1254.{{Overline|54}}'''
|-
|-
|Mi, Si
|Si
|F
|8, F
|9
|9
|30\11
|30\11, 1384.615
1384; 1.625
|22\8, 1389.474
|22\8
| 36\13, 1393.548
1389; 2.
|14\5, 1400
|36\13
|34\12, 1406.897
1393; 1, 1, 4.{{Overline|6}}
|20\7, 1411.765
|14\5
|26\9, 1418.182
1400
|34\12
1406; 1, 8.{{Overline|6}}
|20\7
1411; 1, 3.25
|26\9
1418.{{Overline|18}}
|-
|-
|Mi#, Si#
|Si#
|F#
|8#, F#
|9#
|9#
|31\11
|31\11, 1430.769
1430; 1.3
| rowspan="2" |23\8, 1452.632
| rowspan="2" |23\8
|38\13, 1470.968
1452; 1.58{{Overline|3}}
|15\5, 1500
|38\13
|37\12, 1531.034
1470; 1.0{{Overline|3}}
|22\7, 1552.941
|15\5
| 29\9, 1581.818
1500
|37\12
1531; 29
|22\7
1552; 1.0625
|29\9
1581.{{Overline|81}}
|-
|-
|Dob, Solb
|Dob
|Gf
|9b, Gd
|Af
|Af
|32\11
|32\11, 1476.923
1476; 1.08{{Overline|3}}
|37\13, 1432.258
|37\13
|14\5, 1400
1432: 3.875
|33\12, 1365.517
|14\5
|19\7, 1341.176
1400
|24\9, 1309.091
|33\12
1365; 1.9{{Overline|3}}
|19\7
1341; 5.{{Overline|3}}
|24\9
1309.{{Overline|09}}
|-
|-
!Do, Sol
!Do
!G
!'''9, G'''
!A
!A
!33\11
!33\11, 1523.077
1523; 13
!24\8, 1515.789
!24\8
!39\13, 1509.677
1515; 1.2{{Overline|6}}
!15\5, 1500
!39\13
!36\12, 1489.655
1509; 1, 2.1
!21\7, 1482.353
!15\5
!27\9, 1472.727
1500
!36\12
1489; 1, 1.9
!21\7
1482; 2.8{{Overline|3}}
!27\9
1472.{{Overline|72}}
|-
|-
|Do#, Sol#
|Do#
|G#
|9#, G#
|A#
|A#
|34\11
|34\11, 1569.231
1569; 4.{{Overline|3}}
|25\8, 1578.947
|25\8
|41\13, 1587.097
1578; 1.05̄
| rowspan="2" |16\5, 1600
|41\13
|39\12, 1613.793
1587; 10.{{Overline|3}}
|23\7, 1623.529
| rowspan="2" |16\5
|30\9, 1636.364
1600
|39\12
1613; 1, 3.8{{Overline|3}}
|23\7
1623; 1.{{Overline|8}}
|30\9
1636.{{Overline|36}}
|-
|-
|Reb, Lab
|Reb
|Jf, Af
|Xb, Ad
|Bf
|Bf
|36\11
|36\11, 1661.538
1661; 1, 1.1{{Overline|6}}
|26\8, 1642.105
|26\8
|42\13, 1625.806
1642; 9.5
|38\12, 1572.034
|42\13
|22\7, 1552.941
1625; 1.24
|28\9, 1527.{{Overline|27}}
|38\12
1572; 29
|22\7
1552; 1.0625
|28\9
1527.{{Overline|27}}
|-
|-
|'''Re, La'''
|'''Re'''
|'''J, A'''
|'''X, A'''
|'''B'''
|'''B'''
|'''37\11'''
|'''37\11,''' '''1707.692'''
'''1707; 1.{{Overline|4}}'''
|'''27\8,''' '''1705.263'''
|'''27\8'''
|'''44\13,''' '''1703.226'''
'''1705; 3.8'''
|'''17\5,''' '''1700'''
|'''44\13'''
|'''41\12,''' '''1696.552'''
'''1703; 4, 2.'''
|'''24\7,''' '''1694.118'''
|'''17\5'''
|'''31\9,''' '''1690.909'''
 
'''1700'''
|'''41\12'''
'''1696; 1.8125'''
|'''24\7'''
'''1694; 8.5'''
|'''31\9'''
'''1690.{{Overline|90}}'''
|-
|-
|Re#, La#
|Re#
|J#, A#
|X#, A#
|B#
|B#
|38\11
| 38\11, 1753.846
1753; 1.{{Overline|18}}
|28\8, 1768.421
|28\8
|46\13, 1780.645
1768; 2.375
| rowspan="2" |'''18\5,''' '''1800'''
|46\13
|44\12, 1820.690
1780; 1.55
|26\7, 1835.294
| rowspan="2" |'''18\5'''
| 34\9, 1854.545
'''1800'''
|44\12
1820; 1.45
|26\7
1835; 3,4
|34\9
1854.{{Overline|54}}
|-
|-
|'''Mib, Sib'''
|'''Mib'''
|'''Af, Bf'''
|'''Eb, Bd'''
|'''Cf'''
|'''Cf'''
|'''40\11'''
|'''40\11,''' '''1846.154'''
'''1846; 6.5'''
|'''29\8,''' '''1831.579'''
|'''29\8'''
|'''47\13,''' '''1819.355'''
 
|'''43\12,''' '''1779.310'''
'''1831; 1.{{Overline|72}}'''
|'''25\7,''' '''1764.706'''
|'''47\13'''
|'''32\9,''' '''1745.455'''
'''1819; 2.{{Overline|81}}'''
|'''43\12'''
'''1779; 3.{{Overline|2}}'''
|'''25\7'''
'''1764; 1, 3.25'''
|'''32\9'''
'''1745.{{Overline|45}}'''
|-
|-
|Mi, Si
|Mi
|A, B
|E, B
|C
|C
|41\11
| 41\11, 1892.308
1892; 3.25
|30\8, 1894.737
|30\8
|49\13, 1896.774
1894; 1, 2.8
|19\5, 1900
|49\13
|46\12, 1903.448
1896; 1.291{{Overline|6}}
|27\7, 1905.882
|19\5
|35\9, 1909.090
1900
|46\12
1903; 2, 2.1{{Overline|6}}
|27\7
1905; 1, 7.5
|35\9
1909.{{Overline|09}}
|-
|-
|Mi#, Si#
|Mi#
|A#, B#
|E#, B#
|C#
|C#
|42\11
|42\11, 1938.462
1938; 2.1{{Overline|6}}
| rowspan="2" |31\8, 1957.895
| rowspan="2" |31\8
|51\13, 1974.194
1957; 1, 8.5
|20\5, 2000
|51\13
|49\12, 2027.586
1974; 5.1{{Overline|6}}
|29\7, 2047.059
|20\5
| 38\9, 2072.727
2000
|49\12
2027; 1, 1.41{{Overline|6}}
|29\7
2047; 17
|38\9
2072.{{Overline|72}}
|-
|-
|Dob, Solb
|Solb
|Bb, Cf
|0b, Dd
|Df
|Df
|43\15
|43\11, 1984.615
1984; 1.625
|50\13, 1935.484
|50\13
|19\5, 1900
1935; 2.0{{Overline|6}}
|45\12, 1862.069
|19\5
|26\7, 1835.294
1900
|33\9, 1800
|45\12
1862; 14.5
|26\7
1835; 3,4
|33\9
1800
|-
|-
!Do, Sol
!Sol
!B, C
!0, D
!D
!D
!44\11
!44\11, 2030.769
2030; 1.3
!32\8, 2021.053
!32\8
! 52\13, 2012.903
 
!20\5, 2000
2021; 19
!48\12, 1986.207
!52\13
!28\7, 1976.471
2012; 1, 9.{{Overline|3}}
!36\9, 1963.636
!20\5
2000
!48\12
1986; 4.8{{Overline|3}}
!28\7
1976; 2.125
!36\9
1963.{{Overline|63}}
|-
|-
|Do#, Sol#
| D#
|Sol#
|45\11, 2076.923
|B#, C#
|33\8, 2084.211
|0#, D#
|54\13, 2090.323
|D#
| rowspan="2" |21\5, 2100
|45\11
|51\12, 2110.345
2076; 1.08{{Overline|3}}
|30\7, 2117.647
|33\8
|39\9, 2127.273
2084; 4.75
|54\13
2090; 3.1
| rowspan="2" |21\5
2100
|51\12
2110; 2.9
|30\7
2117; 1.{{Overline|54}}
|39\9
2127.{{Overline|27}}
|-
|-
|Reb, Lab
|Lab
|Cf, Qf
|1b, 1d
|Ef
|Ef
|47\11
|47\11, 2169.231
2169; 4.{{Overline|3}}
|34\8, 2147.368
|34\8
|55\13, 2129.032
2147; 2, 1.4
|50\12, 2068.966
|55\13
|29\7, 2047.059
2129; 31
|37\9, 2018.182
|50\12
2068; 1, 28
|29\7
2047; 17
|37\9
2018.{{Overline|18}}
|-
|-
|'''Re, La'''
|'''La'''
|'''C, Q'''
|'''1'''
|'''E'''
|'''E'''
|'''48\11'''
|'''48\11,''' '''2215.385'''
'''2215; 2.6'''
|'''35\8,''' '''2210.526'''
|'''35\8'''
|'''57\13,''' '''2206.452'''
'''2210; 1.9'''
|'''22\5,''' '''2200'''
|'''57\13'''
|'''53\12,''' '''2193.103'''
'''2206; 2, 4.{{Overline|6}}'''
|'''31\7,''' '''2188.235'''
|'''22\5'''
|'''40\9,''' '''2181.818'''
'''2200'''
|'''53\12'''
'''2193; 9.{{Overline|6}}'''
|'''31\7'''
'''2188; 4.25'''
|'''40\9'''
'''2181.{{Overline|81}}'''
|-
|-
|Re#, La#
|La#
|C#, Q#
|1#
|E#
|E#
|49\11
|49\11, 2261.538
2261; 1, 1.1{{Overline|6}}
|36\8, 2273.684
|36\8
|59\13, 2283.871
2273; 1, 2.1{{Overline|6}}
| rowspan="2" |'''23\5,''' '''2300'''
|59\13
|56\12, 2317.241
2083; 1.{{Overline|148}}
|33\7, 2329.412
| rowspan="2" |'''23\5'''
|43\9, 2345.455
'''2300'''
|56\12
2327; 4, 7
|33\7
2329; 2, 2.{{Overline|3}}
|43\9
2345.{{Overline|45}}
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Qf, Df'''
|'''2b, 2d'''
|'''Ff'''
|'''Ff'''
|'''51\11'''
|'''51\11,''' '''2353.846'''
'''2353; 1.{{Overline|18}}'''
|'''37\8,''' '''2336.842'''
|'''37\8'''
|'''61\13,''' '''2322.581'''
'''2336; 1.1875'''
|'''55\12,''' '''2275.864'''
|'''61\13'''
|'''32\7,''' '''2258.824'''
'''2322; 1.7{{Overline|2}}'''
|'''41\9,''' '''2236.364'''
|'''55\12'''
'''2275; 1.16'''
|'''32\7'''
'''2258; 1, 4.{{Overline|6}}'''
|'''41\9'''
'''2236.{{Overline|36}}'''
|-
|-
|Mi, Si
|Si
|Q, D
|2
|F
|F
|52\11
|52\11, 2400
2400
|38\8, 2400
|38\8
|62\13, 2400
2400
|24\5, 2400
|62\13
|58\12, 2400
2400
|34\7, 2400
|24\5
|44\9, 2400
2400
|58\12
2400
|34\7
2400
|44\9
2400
|-
|-
|Mi#, Si#
|Si#
|Q#, D#
|2#
|F#
|F#
|53\11
|53\11, 2446.154
2446; 6.5
| rowspan="2" |39\8, 2463.158
| rowspan="2" |39\8
|64\13, 2477.419
2463; 6.{{Overline|3}}
|25\5, 2500
|64\13
|61\12, 2524.138
2477; 2, 2.6
|36\7, 2541.176
|25\5
|47/9, 2563.636
2500
|61\12
2524; 7.25
|36\7
2541; 5.{{Overline|6}}
|47/9
2563.{{Overline|63}}
|-
|-
|Dob, Solb
|Dob
|Df, Sf
|3b, 3d
|1f
|1f
|54\11
|54\11, 2492.308
2492; 3.25
|63\13, 2438.710
|63\13
|24\5, 2400
2438; 1.1{{Overline|36}}
|57\12, 2358.621
|24\5
|33\7, 2329.412
2400
|42\9, 2390.909
|57\12
2358; 1.61̄
|33\7
2329; 2, 2.{{Overline|3}}
|42\9
2390.{{Overline|90}}
|-
|-
!Do, Sol
!Do
!D, S
!3
!1
!1
!55\11
!55\11, 2538.462
2538; 2.1{{Overline|6}}
!40\8, 2526.316
!40\8
!65\13, 2516.129
2526; 3.1{{Overline|6}}
!25\5, 2500
!65\13
!60\12, 2482.759
2516; 7.75
!35\7, 2470.588
!25\5
!45\9, 2454.545
2500
!60\12
2482; '''1.3{{Overline|18}}'''
!35\7
2470; 1.7
!45\9
2454.{{Overline|54}}
|}
|}
{| class="wikitable"
{| class="wikitable"
|+Relative cents<ref name=":05" />
!Notation
! colspan="5" |Notation
!Supersoft
!Supersoft
!Soft
!Soft
Line 918: Line 1,482:
!Superhard
!Superhard
|-
|-
! colspan="2" |Diatonic
!Subsextal
! rowspan="2" |Mahur
!~11ed4/3
! rowspan="2" |Bijou
!~8ed4/3
! rowspan="2" |Hyperionic
!~13ed4/3
! rowspan="2" |~11ed4/3
!~5ed4/3
! rowspan="2" |~8ed4/3
!~12ed4/3
! rowspan="2" |~13ed4/3
!~7ed4\3
! rowspan="2" |~5ed4/3
!~9ed4/3
! rowspan="2" |~12ed4/3
! rowspan="2" |~7ed4\3
! rowspan="2" |~9ed4/3
|-
|-
!Fourth
|0#
!Seventh
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|1f
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''1'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|-
|Do#, Sol#
|Sol#
|G#
|0#, D#
|1#
|1#
|1\11
|5\11, 230.769
''45.{{Overline|45}}''
|4\8, 252.632
|1\8
|7\13, 270.967
''62.5''
| rowspan="2" |'''3\5,''' '''300'''
|2\13
|8\12, 331.034
''76; 1.08{{Overline|3}}''
|5\7, 352.941
| rowspan="2" |1\5
|7\9, 381.818
''100''
|3\12
''125''
|2\7
''142; 1.1{{Overline|6}}''
|3\9
''166.{{Overline|6}}''
|-
|-
|Reb, Lab
|Lab
|Jf, Af
|1b, 1d
|2f
|2f
|3\11
|'''7\11,''' '''323.077'''
''136.{{Overline|36}}''
|'''5\8,''' '''315.789'''
|2\8
|'''8\13,''' '''309.677'''
''125''
|'''7\12,''' '''289.655'''
|3\13
|'''4\7,''' '''282.353'''
''115; 2.6''
|'''5\9,''' '''272.727'''
|2\12
''83.{{Overline|3}}''
|1\7
''71; 2.{{Overline|3}}''
|1\9
''55.''
|-
|-
|'''Re, La'''
|'''La'''
|'''J, A'''
|'''1'''
|'''2'''
|'''2'''
|'''4\11'''
|8\11, 369.231
'''''181.{{Overline|81}}'''''
|6\8, 378.947
|'''3\8'''
|10\13, 387.098
'''''187.5'''''
|4\5, 400
|'''5\13'''
|10\12, 413.793
'''''192; 3.25'''''
|6\7, 423.529
|'''2\5'''
|8\9, 436.364
'''''200'''''
|'''5\12'''
'''''208.{{Overline|3}}'''''
|'''3\7'''
'''''214; 3.5'''''
|'''4\9'''
'''''222.{{Overline|2}}'''''
|-
|-
|Re#, La#
|La#
|J#, A#
|1#
|2#
|2#
|5\11
|9\11, 415.385
''227.{{Overline|27}}''
| rowspan="2" |7\8, 442.105
|4\8
|12\13, 464.516
''250''
|5\5, 500
|7\13
|13\12, 537.069
''269; 4.{{Overline|3}}''
|8\7, 564.705
| rowspan="2" |'''3\5'''
|11\9, 600
'''''300'''''
|8\12
''333.{{Overline|3}}''
|5\7
''357; 7''
|7\9
''388.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Af, Bf'''
|'''2b, 2d'''
|'''3f'''
|'''3f'''
|'''7\11'''
|10\11, 461.538
'''''318.{{Overline|18}}'''''
|11\13, 425.806
|'''5\8'''
|4\5, 400
'''''312.5'''''
|9\12, 372.414
|'''8\13'''
|5\7, 352.941
'''''307; 1.{{Overline|4}}'''''
|6\9, 327.273
|'''7\12'''
'''''291.6̄'''''
|'''4\7'''
'''''285; 1.4'''''
|'''5\9'''
'''''277.{{Overline|7}}'''''
|-
|-
|Mi, Si
!3
|Si
!'''11\11,''' '''507.692'''
|A, B
!'''8\8,''' '''505.263'''
|2
!'''13\13,''' '''503.226'''
|3
!5\5, 500
|8\11
!'''12\12,''' '''496.552'''
''363.{{Overline|63}}''
!'''7\7,''' '''494.118'''
|6\8
!'''9\9,''' '''490.909'''
''375''
|10\13
''384; 1.625''
|4\5
''400''
|10\12
''416.{{Overline|6}}''
|6\7
''428; 1.75''
|8\9
''444.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|A#, B#
|2#
|3#
|3#
|9\11
|12\11, 553.846
''409.{{Overline|09}}''
|9\8, 568.421
| rowspan="2" |7\8
|15\13, 580.645
''437.5''
| rowspan="2" |6\5, 600
|12\13
|15\12, 620.690
''461; 1, 1.1{{Overline|6}}''
|9\7, 635.294
|5\5
|12\9, 654.545
''500''
|13\12
''541.{{Overline|6}}''
|8\7
''571; 2.{{Overline|3}}''
|11\9
''611.1̄''
|-
|-
|Dob, Solb
|Dob
|Bb, Cf
|3b, 3d
|4f
|4f
|10\11
|14\11, 646.154
''454.{{Overline|54}}''
|10\8, 631.579
|11\13
|16\13, 619.355
''423; 13''
|14\12, 579.310
|4\5
|8\7, 564.706
''400''
|10\9, 545.455
|9\12
''375''
|5\7
''357; 7''
|6\9
''333.{{Overline|3}}''
|-
|-
!Do, Sol
|'''4'''
!Do
|'''15\11,''' '''692.308'''
!B, C
|'''11\8'''  '''694.737'''
!3
|'''18\13,''' '''696.774'''
!4
|'''7\5,''' '''700'''
! colspan="7" |''500''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|-
|Do#, Sol#
|Do#
|B#, C#
|3#
|4#
|4#
|12\11
|16\11, 738.462
''545.{{Overline|45}}''
|12\8, 757.895
|9\8
|20\13, 774.194
''562.5''
| rowspan="2" |'''8\5,''' '''800'''
|15\13
|20\12, 827.586
''576; 1.08{{Overline|3}}''
|12\7, 847.059
| rowspan="2" |6\5
|16\9, 872.727
''600''
|15\12
''625''
|9\7
''642; 1.1{{Overline|6}}''
|12\9
''666.{{Overline|6}}''
|-
|-
|Reb, Lab
|Reb
|Cf, Qf
|4b, 4d
|5f
|5f
|14\11
|'''18\11,''' '''830.769'''
''636.{{Overline|36}}''
|'''13\8,''' '''821.053'''
|10\8
|'''21\13,''' '''812.903'''
''625''
|'''19\12,''' '''786.207'''
|16\13
|'''11\7,''' '''776.471'''
''615; 2.6''
|'''14\9,''' '''763.636'''
|14\12
''583.{{Overline|3}}''
|8\7
''571; 2.{{Overline|3}}''
|10\9
''555.''
|-
|-
|'''Re, La'''
|'''Re'''
|'''C, Q'''
|'''4'''
|'''5'''
|'''5'''
|'''15\11'''
|19\11, 876.923
'''''681.{{Overline|81}}'''''
|14\8, 884.211
|'''11\8'''
|23\13, 890.323
'''''687.5'''''
|9\5, 900
|'''18\13'''
|22\12, 910.345
'''''692; 3.25'''''
|13\7, 917.647
|'''7\5'''
|17\9, 927.727
'''''700'''''
|'''17\12'''
'''''708.{{Overline|3}}'''''
|'''10\7'''
'''''714; 3.5'''''
|'''13\9'''
'''''722.{{Overline|2}}'''''
|-
|-
|Re#, La#
|Re#
|C#, Q#
|4#
|5#
|5#
|16\11
|20\11, 923.077
''727.{{Overline|27}}''
| rowspan="2" |15\8, 947.368
|12\8
|25\13, 967.742
''750''
|10\5, 1000
|20\13
|25\12, 1034.483
''769; 4.{{Overline|3}}''
|15\7, 1058.824
| rowspan="2" |'''8\5'''
|20\9, 1090.909
'''''800'''''
|20\12
''833.{{Overline|3}}''
|12\7
''857; 7''
|16\9
''888.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Qf, Df'''
|'''5b, 5d'''
|'''6f'''
|'''6f'''
|'''18\11'''
|21\11, 969.231
'''''818.{{Overline|18}}'''''
|24\13, 929.032
|'''13\8'''
|9\5, 900
'''''812.5'''''
|21\12, 868.966
|'''21\13'''
|11\7, 776.471
'''''807; 1.{{Overline|4}}'''''
|15\9, 818.182
|'''19\12'''
'''''791.{{Overline|6}}'''''
|'''11\7'''
'''''785; 1.4'''''
|'''14\9'''
'''''777.{{Overline|7}}'''''
|-
|-
|Mi, Si
!6
|Si
!22\11, 1015.385
|Q, D
!16\8, 1010.526
|5
!26\13, 1006.452
|6
!10\5, 1000
|19\11
!24\12, 993.103
''863.{{Overline|63}}''
!14\7, 988.235
|14\8
!18\9, 981.818
''875''
|23\13
''884; 1.625''
|9\5
''900''
|22\12
''916.{{Overline|6}}''
|13\7
''928; 1.75''
|17\9
''944.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|Q#, D#
|5#
|6#
|6#
|20\11
|23\11, 1061.538
''909.{{Overline|09}}''
|17\8, 1073.684
| rowspan="2" |15\8
|28\13, 1083.871
''937.5''
| rowspan="2" |11\5, 1100
|25\13
|27\12, 1117.241
''961; 1, 1.1{{Overline|6}}''
|16\7, 1129.412
|10\5
|21\9, 1145.455
''1000''
|25\12
''1041.{{Overline|6}}''
|15\7
''1071; 2.{{Overline|3}}''
|20\9
''1111.1̄''
|-
|-
|Dob, Solb
|Solb
|Df, Sf
|6b, 6d
|7f
|7f
|21\11
|25\11, 1153.846
''954.{{Overline|54}}''
|18\8, 1136.842
|24\13
|29\13, 1122.581
''923; 13''
|26\12, 1075.862
|9\5
|15\7, 1058.824
''900''
|19\9, 1036.364
|21\12
''875''
|12\7
''857; 7''
|15\9
''833.{{Overline|3}}''
|-
|-
!Do, Sol
|7
!Sol
|'''26\11,''' '''1200'''
!D, S
|'''19\8,''' '''1200'''
!6
|'''31\13,''' '''1200'''
!7
|'''12\5,''' '''1200'''
! colspan="7" |''1000''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|-
|Do#, Sol#
|Sol#
|D#, S#
|6#
|7#
|7#
|23\11
|27\11, 1246.154
''1045.{{Overline|45}}''
|20\8, 1263.158
|17\8
|33\13, 1277.419
''1062.5''
| rowspan="2" |'''13\5,''' '''1300'''
|28\13
|32\12, 1324.138
''1076; 1.08{{Overline|3}}''
|19\7, 1341.176
| rowspan="2" |11\5
|25\9, 1363.636
''1100''
|27\12
''1125''
|16\7
''1142; 1.1{{Overline|6}}''
|21\9
''1166.{{Overline|6}}''
|-
|-
|Reb, Lab
|Lab
|Ef
|7b, 7d
|8f
|8f
|25\11
|'''29\11,''' '''1338.462'''
''1136.{{Overline|36}}''
|'''21\8,''' '''1326.316'''
|18\8
|'''34\13,''' '''1316.129'''
''1125''
|'''31\12,''' '''1282.759'''
|29\13
|'''18\7,''' '''1270.588'''
''1115; 2.6''
|'''23\9,''' '''1254.545'''
|26\12
''1083.{{Overline|3}}''
|22\7
''1571; 2.{{Overline|3}}''
|19\9
''1055.''
|-
|-
|'''Re, La'''
|'''La'''
|'''E'''
|'''7'''
|'''8'''
|'''8'''
|'''26\11'''
|30\11, 1384.615
'''''1181.{{Overline|81}}'''''
|22\8, 1389.474
|'''19\8'''
|36\13, 1393.548
'''''1187.5'''''
|14\5, 1400
|'''31\13'''
|34\12, 1406.897
'''''1192; 3.25'''''
|20\7, 1411.765
|'''12\5'''
|26\9, 1418.182
'''''1200'''''
|'''29\12'''
'''''1208.{{Overline|3}}'''''
|'''17\7'''
'''''1214; 3.5'''''
|'''22\9'''
'''''1222.{{Overline|2}}'''''
|-
|-
|Re#, La#
|La#
|E#
|7#
|8#
|8#
|27\11
|31\11, 1430.769
''1227.{{Overline|27}}''
| rowspan="2" |23\8, 1452.632
|20\8
|38\13, 1470.968
''1250''
|15\5, 1500
|33\13
|37\12, 1531.034
''1269; 4.{{Overline|3}}''
|22\7, 1552.941
| rowspan="2" |'''13\5'''
|29\9, 1581.818
'''''1300'''''
|32\12
''1333.{{Overline|3}}''
|19\7
''1357; 7''
|25\9
''1388.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|9f
|'''Sib'''
|32\11, 1476.923
|'''Ff'''
|37\13, 1432.258
|'''8b, Fd'''
|14\5, 1400
|'''9f'''
|33\12, 1365.517
|'''29\11'''
|19\7, 1341.176
'''''1318.{{Overline|18}}'''''
|24\9, 1309.091
|'''21\8'''
'''''1312.5'''''
|'''34\13'''
'''''1307; 1.{{Overline|4}}'''''
|'''31\12'''
'''''1291.{{Overline|6}}'''''
|'''18\7'''
'''''1285; 1.4'''''
|'''23\9'''
'''''1277.{{Overline|7}}'''''
|-
|-
|Mi, Si
!9
|Si
!33\11, 1523.077
|F
!24\8, 1515.789
|8, F
!39\13, 1509.677
|9
!15\5, 1500
|30\11
!36\12, 1489.655
''1363.{{Overline|63}}''
!21\7, 1482.353
|22\8
!27\9, 1472.727
''1375''
|36\13
''1384; 1.625''
|14\5
''1400''
|34\12
''1416.{{Overline|6}}''
|20\7
''1428; 1.75''
|26\9
''1444.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|F#
|8#, F#
|9#
|9#
|31\11
|34\11, 1569.231
''1409.{{Overline|09}}''
|25\8, 1578.947
| rowspan="2" |23\8
|41\13, 1587.097
''1437.5''
| rowspan="2" |16\5, 1600
|38\13
|39\12, 1613.793
''1461; 1, 1.1{{Overline|6}}''
|23\7, 1623.529
|15\5
|30\9, 1636.364
''1500''
|-
|37\12
|Xb
''1541.{{Overline|6}}''
|36\11, 1661.538
|22\7
|26\8, 1642.105
''1571; 2.{{Overline|3}}''
|42\13, 1625.806
|29\9
|38\12, 1572.034
''1611.''
|22\7, 1552.941
|28\9, 1527.{{Overline|27}}
|-
|'''X'''
|'''37\11,''' '''1707.692'''
|'''27\8,''' '''1705.263'''
|'''44\13,''' '''1703.226'''
|'''17\5,''' '''1700'''
|'''41\12,''' '''1696.552'''
|'''24\7,''' '''1694.118'''
|'''31\9,''' '''1690.909'''
|-
|X#
|38\11, 1753.846
|28\8, 1768.421
|46\13, 1780.645
| rowspan="2" |'''18\5,''' '''1800'''
|44\12, 1820.690
|26\7, 1835.294
|34\9, 1854.545
|-
|'''ɛf'''
|'''40\11,''' '''1846.154'''
|'''29\8,''' '''1831.579'''
|'''47\13,''' '''1819.355'''
|'''43\12,''' '''1779.310'''
|'''25\7,''' '''1764.706'''
|'''32\9,''' '''1745.455'''
|-
|41\11, 1892.308
|30\8, 1894.737
|49\13, 1896.774
|19\5, 1900
|46\12, 1903.448
|27\7, 1905.882
|35\9, 1909.090
|-
|ɛ#
|42\11, 1938.462
| rowspan="2" |31\8, 1957.895
|51\13, 1974.194
|20\5, 2000
|49\12, 2027.586
|29\7, 2047.059
|38\9, 2072.727
|-
|-
|Dob, Solb
|Dob
|Gf
|9b, Gd
|Af
|Af
|32\11
|43\11, 1984.615
''1454.{{Overline|54}}''
|50\13, 1935.484
|37\13
|19\5, 1900
''1423; 13''
|45\12, 1862.069
|14\5
|26\7, 1835.294
''1400''
|33\9, 1800
|33\12
''1375''
|19\7
''1357; 7''
|24\9
''1333.{{Overline|3}}''
|-
|-
!Do, Sol
!Do
!G
!'''9, G'''
!A
!A
! colspan="7" |''1500''
!44\11, 2030.769
!32\8, 2021.053
!52\13, 2012.903
!20\5, 2000
!48\12, 1986.207
!28\7, 1976.471
!36\9, 1963.636
|-
|-
|Do#, Sol#
|Sol#
|G#
|9#, G#
|A#
|A#
|34\11
|45\11, 2076.923
''1545.{{Overline|45}}''
|33\8, 2084.211
|25\8
|54\13, 2090.323
''1562.5''
| rowspan="2" |21\5, 2100
|41\13
|51\12, 2110.345
''1576; 1.08{{Overline|3}}''
|30\7, 2117.647
| rowspan="2" |16\5
|39\9, 2127.273
''1600''
|39\12
''1625''
|23\7
''1642; 1.1{{Overline|6}}''
|30\9
''1666.{{Overline|6}}''
|-
|-
|Reb, Lab
|Lab
|Jf, Af
|Xb, Ad
|Bf
|Bf
|36\11
|47\11, 2169.231
''1636.{{Overline|36}}''
|34\8, 2147.368
|26\8
|55\13, 2129.032
''1625''
|50\12, 2068.966
|42\13
|29\7, 2047.059
''1615; 2.6''
|37\9, 2018.182
|38\12
''1583.{{Overline|3}}''
|22\7
''1571; 2.{{Overline|3}}''
|28\9
''1555.5̄''
|-
|-
|'''Re, La'''
|'''La'''
|'''J, A'''
|'''X, A'''
|'''B'''
|'''B'''
|'''37\11'''
|'''48\11,''' '''2215.385'''
'''''1681.{{Overline|81}}'''''
|'''35\8,''' '''2210.526'''
|'''27\8'''
|'''57\13,''' '''2206.452'''
'''''1687.5'''''
|'''22\5,''' '''2200'''
|'''44\13'''
|'''53\12,''' '''2193.103'''
'''''1692; 3.25'''''
|'''31\7,''' '''2188.235'''
|'''17\5'''
|'''40\9,''' '''2181.818'''
 
'''''1700'''''
|'''41\12'''
'''''1708.{{Overline|3}}'''''
|'''24\7'''
'''''1714; 3.5'''''
|'''31\9'''
'''''1722.{{Overline|2}}'''''
|-
|-
|Re#, La#
|La#
|J#, A#
|X#, A#
|B#
|B#
|38\11
|49\11, 2261.538
''1727.{{Overline|27}}''
|36\8, 2273.684
|28\8
|59\13, 2283.871
''1750''
| rowspan="2" |'''23\5,''' '''2300'''
|46\13
|56\12, 2317.241
''1769; 4.{{Overline|3}}''
|33\7, 2329.412
| rowspan="2" |'''18\5'''
|43\9, 2345.455
'''''1800'''''
|44\12
''1833.{{Overline|3}}''
|26\7
''1857; 7''
|34\9
''1888.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Af, Bf'''
|'''Eb, Bd'''
|'''Cf'''
|'''Cf'''
|'''40\11'''
|'''51\11,''' '''2353.846'''
'''''1818.{{Overline|18}}'''''
|'''37\8,''' '''2336.842'''
|'''29\8'''
|'''61\13,''' '''2322.581'''
 
|'''55\12,''' '''2275.864'''
'''''1812.5'''''
|'''32\7,''' '''2258.824'''
|'''47\13'''
|'''41\9,''' '''2236.364'''
'''''1807; 1.{{Overline|4}}'''''
|'''43\12'''
'''''1791.{{Overline|6}}'''''
|'''25\7'''
'''''1785; 1.4'''''
|'''32\9'''
'''''1777.{{Overline|7}}'''''
|-
|-
|Mi, Si
|Si
|A, B
|E, B
|C
|C
|41\11
|52\11, 2400
''1863.{{Overline|63}}''
|38\8, 2400
|30\8
|62\13, 2400
''1875''
|24\5, 2400
|49\13
|58\12, 2400
''1884; 1.625''
|34\7, 2400
|19\5
|44\9, 2400
''1900''
|46\12
''1916.{{Overline|6}}''
|27\7
''1928; 1.75''
|35\9
''1944.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|A#, B#
|E#, B#
|C#
|C#
|42\11
|53\11, 2446.154
''1909.{{Overline|09}}''
| rowspan="2" |39\8, 2463.158
| rowspan="2" |31\8
|64\13, 2477.419
''1937.5''
|25\5, 2500
|51\13
|61\12, 2524.138
''1961; 1, 1.1{{Overline|6}}''
|36\7, 2541.176
|20\5
|47/9, 2563.636
''2000''
|49\12
''2041.{{Overline|6}}''
|29\7
''2071; 2.{{Overline|3}}''
|38\9
''2111.1̄''
|-
|-
|Dob, Solb
|Dob
|Bb, Cf
|0b, Dd
|Df
|Df
|43\11
|54\11, 2492.308
''1954.{{Overline|54}}''
|63\13, 2438.710
|50\13
|24\5, 2400
''1923; 13''
|57\12, 2358.621
|19\5
|33\7, 2329.412
''1900''
|42\9, 2390.909
|45\12
''1875''
|26\7
''1857; 7''
|33\9
''1833.{{Overline|3}}''
|-
|-
!Do, Sol
!Sol
!B, C
!0, D
!D
!D
! colspan="7" |''2000''
!55\11, 2538.462
!40\8, 2526.316
!65\13, 2516.129
!25\5, 2500
!60\12, 2482.759
!35\7, 2470.588
!45\9, 2454.545
|-
|-
|Do#, Sol#
|Sol#
|B#, C#
|0#, D#
|D#
|D#
|45\11
|56\11, 2584.615
''2045.{{Overline|45}}''
|41\8, 2589.474
|33\8
|67\13, 2593.548
''2062.5''
| rowspan="2" |26\5, 2600
|54\13
|63\12, 2606.897
''2076; 1.08{{Overline|3}}''
|37\7, 2611.765
| rowspan="2" |21\5
|48\9, 2618.182
''2100''
|51\12
''2125''
|30\7
''2142; 1.1{{Overline|6}}''
|39\9
 
''2166.{{Overline|6}}''
|-
|-
|Reb, Lab
|Lab
|Cf, Qf
|1b, 1d
|Ef
|Ef
|47\11
|58\11, 2676.923
''2136.{{Overline|36}}''
|42\8, 2652.632
|34\8
|69\13, 2670.968
''2125''
|62\12, 2565.517
|55\13
|36\7, 2541.176
''2115; 2.6''
|46\9, 2509.091
|50\12
''2083.{{Overline|3}}''
|29\7
''2071; 2.{{Overline|3}}''
|37\9
''2055.5̄''
|-
|-
|'''Re, La'''
|'''La'''
|'''C, Q'''
|'''1'''
|'''E'''
|'''E'''
|'''48\11'''
|'''59\11,''' '''2723.077'''
'''''2181.{{Overline|81}}'''''
|'''43\8,''' '''2715.789'''
|'''35\8'''
|'''70\13,''' '''2709.677'''
'''''2187.5'''''
|'''27\5,''' '''2700'''
|'''57\13'''
|'''65\12,''' '''2689.655'''
'''''2192; 3.25'''''
|'''38\7,''' '''2682.353'''
|'''22\5'''
|'''49\9,''' '''2672.727'''
'''''2200'''''
|'''53\12'''
'''''2208.{{Overline|3}}'''''
|'''31\7'''
'''''2214; 3.5'''''
|'''40\9'''
'''''2222.{{Overline|2}}'''''
|-
|-
|Re#, La#
|La#
|C#, Q#
|1#
|E#
|E#
|49\11
|60\11, 2769.231
''2227.{{Overline|27}}''
|44\8, 2778.947
|36\8
|72\13, 2787.097
''2250''
| rowspan="2" |'''28\5,''' '''2800'''
|59\13
|68\12, 2813.793
''2269; 4.{{Overline|3}}''
|40\7, 2823.529
| rowspan="2" |'''23\5'''
|52\9, 2836.364
'''''2300'''''
|56\12
''2333.{{Overline|3}}''
|33\7
''2357; 7''
|43\9
''2388.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Qf, Df'''
|'''2b, 2d'''
|'''Ff'''
|'''Ff'''
|'''51\11'''
|'''62\11,''' '''2861.538'''
'''''2318.{{Overline|18}}'''''
|'''45\8,''' '''2842.105'''
|'''37\8'''
|'''73\13,''' '''2825.806'''
 
|'''67\12,''' '''2772.034'''
'''''2312.5'''''
|'''39\7,''' '''2752.941'''
|'''60\13'''
|'''50\9,''' '''2727.273'''
'''''2307; 1.{{Overline|4}}'''''
|'''55\12'''
'''''2291.{{Overline|6}}'''''
|'''32\7'''
'''''2285; 1.4'''''
|'''41\9'''
'''''2277.{{Overline|7}}'''''
|-
|-
|Mi, Si
|Si
|Q, D
|2
|F
|F
|52\11
|63\11, 2907.692
''2363.{{Overline|63}}''
|46\8, 2905.263
|38\8
|75\13, 2903.226
''2375''
|29\5, 2900
|62\13
|70\12, 2896.552
''2384; 1.625''
|41\7, 2894.118
|24\5
|53\9, 2890.909
''2400''
|58\12
''2416.{{Overline|6}}''
|34\7
''2428; 1.75''
|44\9
''2444.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|Q#, D#
|2#
|F#
|F#
|53\11
|64\11, 2953.846
''2409.{{Overline|09}}''
| rowspan="2" |47\8, 2968.421
| rowspan="2" |39\8
|77\13, 2980.645
 
|30\5, 3000
''2437.5''
|73\12, 3020.690
|64\13
|43\7, 3035.294
''2461; 1, 1.1{{Overline|6}}''
|55\9, 3000
|25\5
''2500''
|61\12
''2541.{{Overline|6}}''
|36\7
''2571; 2.3̄''
|47\9
''2611.1̄''
|-
|-
|Dob, Solb
|0f
|Dob
|65\11, 3000
|Df, Sf
|76\13, 2941.935
|3b, 3d
|29\5, 2900
|1f
|69\29, 2855.172
|54\11
|40\7, 2823.529
''2454.{{Overline|54}}''
|52\9, 2836.364
|63\13
''2423; 13''
|24\5
''2400''
|57\12
''2375''
|33\7
''2357; 7''
|42\9
''2333.{{Overline|3}}''
|-
|-
!Do, Sol
!0
!Do
!66\11, 3046.154
!D, S
!48\8, 30'''31.579'''
!3
!78\13, 30'''19.355'''
!1
!30\5, 3000
! colspan="7" |''2500''
!72\12, 29'''79.310'''
!42\7, 2964.706
!54\9, 2945.455
|}
|}


==Intervals==
==Intervals==
Line 1,756: Line 1,973:
|-
|-
|0
|0
|Do, Sol
|F/C/G ut
Do, Sol
 
د, ص
|perfect unison
|perfect unison
|0
|0
|Do, Sol
|F/C/G ut
Do, Sol
 
د, ص
|perfect fourth
|perfect fourth
|-
|-
|1
|1
|Mib, Sib
|A/E/B mib
Mib, Sib
 
صb, مb
|diminished third
|diminished third
| -1
| -1
|Re, La
|G/D/A re
Re, La
 
ر, ل
|perfect second
|perfect second
|-
|-
|2
|2
|Reb, Lab
|G/D/A reb
Reb, Lab
 
رb, لb
|diminished second
|diminished second
| -2
| -2
|Mi, Si
|A/E/B mi
Mi, Si
 
ص, م
|perfect third
|perfect third
|-
|-
Line 1,779: Line 2,014:
|-
|-
|3
|3
|Dob, Solb
|F/C/G utb
Dob, Solb
 
دb, صb
|diminished fourth
|diminished fourth
| -3
| -3
|Do#, Sol#
|F/C/G ut#
Do#, Sol#
 
د, #ص#
|augmented unison (chroma)
|augmented unison (chroma)
|-
|-
|4
|4
|Mibb, Sibb
|A/E/B mibb
Mibb, Sibb
 
مbb, صbb
|doubly diminished third
|doubly diminished third
| -4
| -4
|Re#, La#
|G/D/A re#
Re#, La#
 
ر ,# ل#
|augmented second
|augmented second
|}
|}
Line 1,795: Line 2,042:
The generator chain for this scale is as follows:
The generator chain for this scale is as follows:
{| class="wikitable"
{| class="wikitable"
|A/E/B mibb
|F/C/G utb
|G/D/A reb
|A/E/B mib
|F/C/G ut
|G/D/A re
|A/E/B mi
|F/C/G ut#
|G/D/A re#
|A/E/B mi#
|-
|Mibb
|Mibb
Sibb
Sibb
Line 1,815: Line 2,073:
|Mi#
|Mi#
Si#
Si#
|-
|مbb
تbb
|دb
صb
|رb
لb
|مb
تb
ص
ل
ت
|د#
ص#
|ر#
ل#
|م#
ت#
|-
|-
|dd3
|dd3
Line 1,854: Line 2,133:
|-
|-
|Phrygian
|Phrygian
|LsLL
|sLL
|<nowiki>0|2</nowiki>
|<nowiki>0|2</nowiki>
|d
|d
Line 1,866: Line 2,145:
[[Comma]] list: [[81/80]]
[[Comma]] list: [[81/80]]


[[POL2]] generator: ~9/8 = 193.6725
[[POL2]] generator: ~9/8 = 193.6725¢


[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]


[[Optimal ET sequence]]: ~(5ed4/3, 8ed4/3, 13ed4/3)
[[Optimal ET sequence]]: [[15ed12/5]], [[24ed12/5]], [[39ed12/5]] ≈ [[5ed4/3]], [[8ed4/3]], [[13ed4/3]]
==='''Mahuric-Superpyth'''===
==='''Mahuric-Superpyth'''===
[[Subgroup]]: 4/3.9/7.3/2
[[Subgroup]]: 4/3.9/7.3/2
Line 1,876: Line 2,155:
[[Comma]] list: [[64/63]]
[[Comma]] list: [[64/63]]


[[POL2]] generator: ~8/7 = 216.7325
[[POL2]] generator: ~8/7 = 216.7325¢


[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]


[[Optimal ET sequence]]: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3)
[[Optimal ET sequence]]: [[15ed7/3]], [[21ed7/3]], [[27ed7/3]], [[33ed7/3]] ≈ [[5ed4/3]], [[7ed4/3]], [[9ed4/3]], [[11ed4/3]]
====Scale tree====
====Scale tree====
The spectrum looks like this:
The spectrum looks like this:
{| class="wikitable"
{| class="wikitable"
! colspan="3" rowspan="2" |Generator
!Generator
(bright)
(bright)
! colspan="2" |Cents
!Cents
! rowspan="2" |L
!L
! rowspan="2" |s
!s
! rowspan="2" |L/s
!L/s
! rowspan="2" |Comments
!Comments
|-
!Normalised<ref name=":05" />
!''ed5\12<ref name=":05" />''
|-
|-
|1\3
|1\3
|
|171.429
|
|171; 2.{{Overline|3}}
|''166.{{Overline|6}}''
|1
|1
|1
|1
Line 1,906: Line 2,179:
|-
|-
|6\17
|6\17
|
|180.000
|
|180
|''176; 2.125''
|6
|6
|5
|5
|1.200
|1.200
|
|-
|
|11\31
|
|180; 1.21{{Overline|6}}
|''177; 2, 2.6''
|11
|9
|1.222
|
|
|-
|-
|5\14
|5\14
|
|181.818
|
|181.{{Overline|81}}
|''178; 1.75''
|5
|5
|4
|4
Line 1,935: Line 2,192:
|
|
|-
|-
|
|14\39
|14\39
|
|182.609
|182; 1, 1.5
|''179; 2, 19''
|14
|14
|11
|11
Line 1,945: Line 2,199:
|
|
|-
|-
|
|9\25
|9\25
|
|183.051
|183; 19.{{Overline|6}}
|''180''
|9
|9
|7
|7
Line 1,956: Line 2,207:
|-
|-
|4\11
|4\11
|
|184.615
|
|184; 1.625
|''181.{{Overline|81}}''
|4
|4
|3
|3
Line 1,965: Line 2,213:
|
|
|-
|-
|
|15\41
|
|185; 1.7{{Overline|63}}
|''182; 1, 12.{{Overline|6}}''
|15
|11
|1.364
|
|-
|
|11\30
|11\30
|
|185.915
|185, 1, 10.8{{Overline|3}}
|''183.{{Overline|3}}''
|11
|11
|8
|8
Line 1,985: Line 2,220:
|
|
|-
|-
|
|7\19
|7\19
|
|186.667
|186.{{Overline|6}}
|''184; 4.75''
|7
|7
|5
|5
Line 1,995: Line 2,227:
|
|
|-
|-
|
|10\27
|10\27
|
|187.500
|187.5
|''185.{{Overline|185}}''
|10
|10
|7
|7
Line 2,005: Line 2,234:
|
|
|-
|-
|
|13\35
|13\35
|
|187.952
|187; 1, 19.75
|''185; 1.4''
|13
|13
|9
|9
Line 2,015: Line 2,241:
|
|
|-
|-
|
|16\43
|16\43
|
|188.253
|188; 4.25
|''186; 21.5''
|16
|16
|11
|11
Line 2,026: Line 2,249:
|-
|-
|3\8
|3\8
|
|189.474
|
|189; 2.{{Overline|1}}
|''187.5''
|3
|3
|2
|2
Line 2,035: Line 2,255:
|Mahuric-Meantone starts here
|Mahuric-Meantone starts here
|-
|-
|
|17\45
|
|190; 1, 1.{{Overline|12}}
|''188.{{Overline|8}}''
|17
|11
|1.5455
|
|-
|
|14\37
|14\37
|
|190.909
|190.{{Overline|90}}
|''189.{{Overline|189}}''
|14
|14
|9
|9
Line 2,055: Line 2,262:
|
|
|-
|-
|
|11\29
|11\29
|
|191.304
|191; 3, 2.{{Overline|3}}
|''189; 1, 1.9''
|11
|11
|7
|7
Line 2,065: Line 2,269:
|
|
|-
|-
|
|8\21
|8\21
|
|192.000
|192
|''190; 2.1''
|8
|8
|5
|5
Line 2,075: Line 2,276:
|
|
|-
|-
|
|
|13\34
|192.{{Overline|592}}
|''191; 5.{{Overline|6}}''
|13
|8
|1.625
|
|-
|
|5\13
|5\13
|
|193.548
|193; 1, 1, 4.{{Overline|6}}
|''192; 4.{{Overline|3}}''
|5
|5
|3
|3
Line 2,095: Line 2,283:
|
|
|-
|-
|
|
|12\31
|12\31
|194.{{Overline|594}}
|194.595
|''193; 1, 1, 4.{{Overline|6}}''
|12
|12
|7
|7
Line 2,105: Line 2,290:
|
|
|-
|-
|
|7\18
|7\18
|
|195.348
|195; 2.8{{Overline|6}}
|''194.{{Overline|4}}''
|7
|7
|4
|4
Line 2,115: Line 2,297:
|
|
|-
|-
|
|9\23
|9\23
|
|196.364
|196.{{Overline|36}}
|''195; 1.5{{Overline|3}}''
|9
|9
|5
|5
Line 2,125: Line 2,304:
|
|
|-
|-
|
|11\28
|11\28
|
|197.015
|197; 67
|''196; 2.{{Overline|3}}''
|11
|11
|6
|6
Line 2,135: Line 2,311:
|
|
|-
|-
|
|13\33
|13\33
|
|197.468
|197; 2.{{Overline|135}}
|''196.{{Overline|96}}''
|13
|13
|7
|7
Line 2,145: Line 2,318:
|
|
|-
|-
|
|15\38
|15\38
|
|197.802
|197; 1, 2, 1, 1.{{Overline|54}}
|''197; 2, 1.4''
|15
|15
|8
|8
Line 2,155: Line 2,325:
|
|
|-
|-
|
|17\43
|17\43
|
|198.058
|198; 17.1{{Overline|6}}
|''197; 1, 2, 14''
|17
|17
|9
|9
Line 2,165: Line 2,332:
|
|
|-
|-
|
|19\48
|19\48
|
|198.261
|198: 3, 1, 28
|''197.91{{Overline|6}}''
|19
|19
|10
|10
Line 2,175: Line 2,339:
|
|
|-
|-
|
|21\53
|21\53
|
|198.425
|198; 2.3{{Overline|518}}
|''198; 8.8{{Overline|3}}''
|21
|21
|11
|11
Line 2,185: Line 2,346:
|
|
|-
|-
|
|23\58
|23\58
|
|198.561
|198; 1, 3, 1.7
|''198; 3.625''
|23
|23
|12
|12
Line 2,195: Line 2,353:
|
|
|-
|-
|
|25\63
|25\63
|
|198.675
|198; 1, 2, 12.25
|''198; 2, 2.{{Overline|36}}''
|25
|25
|13
|13
Line 2,205: Line 2,360:
|
|
|-
|-
|
|27\68
|27\68
|
|198.773
|198; 1, 3.{{Overline|405}}
|''198; 1.{{Overline|8}}''
|27
|27
|14
|14
Line 2,215: Line 2,367:
|
|
|-
|-
|
|29\73
|29\73
|
|198.857
|198; 1, 1.1{{Overline|6}}
|''198; 1, 1.{{Overline|703}}''
|29
|29
|15
|15
Line 2,225: Line 2,374:
|
|
|-
|-
|
|31\78
|31\78
|
|198.930
|198; 1, 12, 2.8
|''198; 1, 2.{{Overline|54}}''
|31
|31
|16
|16
Line 2,235: Line 2,381:
|
|
|-
|-
|
|33\83
|33\83
|
|198.995
|198; 1.{{Overline|005}}
|''198; 1.2{{Overline|57}}''
|33
|33
|17
|17
Line 2,245: Line 2,388:
|
|
|-
|-
|
|35\88
|35\88
|
|199.052
|199; 19.{{Overline|18}}
|''198.8{{Overline|63}}''
|35
|35
|18
|18
Line 2,256: Line 2,396:
|-
|-
|2\5
|2\5
|
|200.000
|
|200
|''200''
|2
|2
|1
|1
Line 2,265: Line 2,402:
|Mahuric-Meantone ends, Mahuric-Pythagorean begins
|Mahuric-Meantone ends, Mahuric-Pythagorean begins
|-
|-
|
|17\42
|17\42
|
|201.980
|201.{{Overline|9801}}
|''202; 2.625''
|17
|17
|8
|8
Line 2,275: Line 2,409:
|
|
|-
|-
|
|15\37
|15\37
|
|202.247
|202; 4.0{{Overline|45}}
|''202.{{Overline|702}}''
|15
|15
|7
|7
Line 2,285: Line 2,416:
|
|
|-
|-
|
|13\32
|13\32
|
|202.597
|202; 1, 1, 2.0{{Overline|6}}
|''203.125''
|13
|13
|6
|6
Line 2,295: Line 2,423:
|
|
|-
|-
|
|11\27
|11\27
|
|203.077
|203; 13
|''203.{{Overline|703}}''
|11
|11
|5
|5
Line 2,305: Line 2,430:
|
|
|-
|-
|
|9\22
|9\22
|
|203.774
|203; 1, 3.41{{Overline|6}}
|''204.{{Overline|54}}''
|9
|9
|4
|4
Line 2,315: Line 2,437:
|
|
|-
|-
|
|7\17
|7\17
|
|204.878
|204; 1. 7.2
|''205; 1.1{{Overline|3}}''
|7
|7
|3
|3
Line 2,325: Line 2,444:
|
|
|-
|-
|
|
|12\29
|12\29
|205; 1.4
|205.714
|''206; 1, 8.{{Overline|6}}''
|12
|12
|5
|5
Line 2,335: Line 2,451:
|
|
|-
|-
|
|
|17\41
|206.{{Overline|06}}
|''207; 3, 6.5''
|17
|7
|2.429
|
|-
|
|5\12
|5\12
|
|206.897
|206; 1, 8.{{Overline|6}}
|''208.{{Overline|3}}''
|5
|5
|2
|2
Line 2,355: Line 2,458:
|Mahuric-Neogothic heartland is from here…
|Mahuric-Neogothic heartland is from here…
|-
|-
|
|
|18\43
|18\43
|207; 1.{{Overline|4}}
|207.693
|''209; 3, 4.{{Overline|3}}''
|18
|18
|7
|7
Line 2,365: Line 2,465:
|
|
|-
|-
|
|
|13\31
|13\31
|208
|208.000
|''209; 1, 2.1''
|13
|13
|5
|5
Line 2,375: Line 2,472:
|
|
|-
|-
|
|8\19
|8\19
|
|208.696
|208; 1.4375
|''210; 1.9''
|8
|8
|3
|3
Line 2,385: Line 2,479:
|…to here
|…to here
|-
|-
|
|11\26
|11\26
|
|209.524
|209; 1.{{Overline|90}}
|''211; 1, 1.1{{Overline|6}}''
|11
|11
|4
|4
Line 2,395: Line 2,486:
|
|
|-
|-
|
|14\33
|14\33
|
|210.000
|210
|''212.{{Overline|12}}''
|14
|14
|5
|5
|2.800
|2.800
|
|-
|
|17\40
|
|210; 3.2{{Overline|3}}
|''212.5''
|17
|6
|2.833
|
|-
|
|20\47
|
|210; 1.9
|''212; 1.{{Overline|30}}''
|20
|7
|2.857
|
|-
|
|23\54
|
|210; 1.4{{Overline|5}}
|''212.{{Overline|962}}''
|23
|8
|2.875
|
|-
|
|26\61
|
|210.{{Overline|810}}
|''213; 8, 1.4''
|26
|9
|2.889
|
|
|-
|-
|3\7
|3\7
|
|211.755
|
|211; 1, 3.25
|''214; 3.5''
|3
|3
|1
|1
Line 2,455: Line 2,500:
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins
|-
|-
|
|22\51
|22\51
|
|212.903
|212; 1, 9.{{Overline|3}}
|''215; 1, 2,1875''
|22
|22
|7
|7
Line 2,465: Line 2,507:
|
|
|-
|-
|
|19\44
|19\44
|
|213.084
|213; 11.{{Overline|8}}
|''215.{{Overline|90}}''
|19
|19
|6
|6
Line 2,475: Line 2,514:
|
|
|-
|-
|
|16\37
|16\37
|
|213.333
|213.
|''216.{{Overline|216}}''
|16
|16
|5
|5
Line 2,485: Line 2,521:
|
|
|-
|-
|
|13\30
|13\30
|
|213.699
|213; 1, 2.3{{Overline|18}}
|''216.{{Overline|6}}''
|13
|13
|4
|4
Line 2,495: Line 2,528:
|
|
|-
|-
|
|10\23
|10\23
|
|214.286
|214; 3.5
|''217; 5.75''
|10
|10
|3
|3
Line 2,505: Line 2,535:
|
|
|-
|-
|
|7\16
|7\16
|
|215.385
|215; 2.6
|''218.75''
|7
|7
|2
|2
Line 2,515: Line 2,542:
|
|
|-
|-
|
|
|18\41
|216
|''219; 1, 1.05''
|18
|5
|3.600
|
|-
|
|11\25
|11\25
|
|216.393
|216; 2.541{{Overline|6}}
|''220''
|11
|11
|3
|3
Line 2,535: Line 2,549:
|
|
|-
|-
|
|15\34
|15\34
|
|216.867
|216; 1.152{{Overline|7}}
|''220; 1.7''
|15
|15
|4
|4
Line 2,545: Line 2,556:
|
|
|-
|-
|
|19\43
|19\43
|
|217.143
|217; 7
|''220; 1, 7.6''
|19
|19
|5
|5
|3.800
|3.800
|
|-
|
|23\52
|
|217; 3, 10.25
|''221; 6.5''
|23
|6
|3.833
|
|
|-
|-
|4\9
|4\9
|
|218.182
|
|218.{{Overline|18}}
|''222.{{Overline|2}}''
|4
|4
|1
|1
Line 2,575: Line 2,570:
|
|
|-
|-
|
|17\38
|
|219; 1, 2.{{Overline|90}}
|''223; 1.58{{Overline|3}}''
|17
|4
|4.250
|
|-
|
|13\29
|13\29
|
|219.718
|219; 1, 2.55
|''224; 7.25''
|13
|13
|3
|3
Line 2,595: Line 2,577:
|
|
|-
|-
|
|9\20
|9\20
|
|220.408
|220; 2.45
|''225''
|9
|9
|2
|2
Line 2,605: Line 2,584:
|
|
|-
|-
|
|14\31
|14\31
|
|221.053
|221; 19
|''225; 1.24''
|14
|14
|3
|3
|4.667
|4.667
|
|-
|
|19\42
|
|221; 2.{{Overline|783}}
|''226; 4.2''
|19
|4
|4.750
|
|
|-
|-
|5\11
|5\11
|
|222.222
|
|222.{{Overline|2}}
|''227.{{Overline|27}}''
|5
|5
|1
|1
Line 2,635: Line 2,598:
|Mahuric-Superpyth ends
|Mahuric-Superpyth ends
|-
|-
|
|16\35
|
|223; 3.{{Overline|90}}
|''228; 1.75''
|16
|3
|5.333
|
|-
|
|11\24
|11\24
|
|223.728
|223; 1, 2.6875
|''229.1{{Overline|6}}''
|11
|11
|2
|2
Line 2,655: Line 2,605:
|
|
|-
|-
|
|17\37
|17\37
|
|224.176
|224; 5.7{{Overline|2}}
|''229.{{Overline|729}}''
|17
|17
|3
|3
Line 2,666: Line 2,613:
|-
|-
|6\13
|6\13
|
|225.000
|
|225
|''230; 1.3''
|6
|6
|1
|1
Line 2,675: Line 2,619:
|
|
|-
|-
|1\3
|1\2
|
|240.000
|
|240
|''250''
|1
|1
|0
|0
Line 2,686: Line 2,627:
|}
|}


== See also ==
==See also==
[[2L 1s (4/3-equivalent)]] - idealized tuning<references />
[[2L 1s (4/3-equivalent)]] - idealized tuning
 
[[4L 2s (7/4-equivalent)]] - Mixolydian and Dorian hexatonic Archytas temperament
 
[[4L 2s (39/22-equivalent)]] - Mixolydian and Dorian hexatonic Neogothic temperament
 
[[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian and Dorian hexatonic Komornik–Loreti temperament
 
[[4L 2s (9/5-equivalent)]] - Mixolydian and Dorian hexatonic Meantone temperament
 
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament
 
[[6L 3s (26/11-equivalent)]] - Mahuric-Neogothic temperament
 
[[6L 3s (12/5-equivalent)]] - Mahuric-Meantone temperament
 
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament
 
[[8L 4s (22/7-equivalent)]] and [[8L 4s (π-equivalent)|8L 4s ([math]π[/math]-equivalent)]] - Bijou Neogothic temperament
 
[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament
 
[[10L 5s (112/27-equivalent)]] - Hyperionic Archytas temperament
 
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament
 
[[10L 5s (64/15-equivalent)]] - Hyperionic Meantone temperament
 
[[10L 5s (30/7-equivalent)]] - Hyperionic septimal Meantone temperament
 
[[12L 6s (16/3-equivalent)]] - Warped Pythagorean Subsextal temperament
 
[[12L 6s (343/64-equivalent)]] - 1/2 comma Archytas Subsextal temperament]
 
[[12L 6s (11/2-equivalent)]] - Low undecimal Subsextal temperament
 
[[12L 6s (448/81-equivalent)]] - 1/6 comma Archytas Subsextal temperament
 
[[12L 6s (4096/729-equivalent)]] - Pythagorean Subsextal temperament
 
[[12L 6s (28/5-equivalent)]] - Low septimal (meantone) Subsextal temperament
 
[[12L 6s (45/16-equivalent)|12L 6s (256/45-equivalent)]] - 1/6 comma meantone Subsextal temperament
 
[[12L 6s (40/7-equivalent)]] - High septimal Subsextal temperament
 
[[12L 6s (64/11-equivalent)]] - High undecimal Subsextal temperament
 
[[12L 6s (729/125-equivalent)]] - 1/2 comma meantone Subsextal temperament <references />