User:Moremajorthanmajor/16edX: Difference between revisions

Wikispaces>JosephRuhf
**Imported revision 602432346 - Original comment: **
 
(34 intermediate revisions by 8 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
'''16edX''' is the scale which occurs as the dominant reformed Mixolydian mode. It also gives the period of the 16th-decade Roccocavallo branch of the Carrera temperament family.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
== Intervals==
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-12-18 07:21:58 UTC</tt>.<br>
{| class="wikitable"
: The original revision id was <tt>602432346</tt>.<br>
|+
: The revision comment was: <tt></tt><br>
!Decade
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
! Period
<h4>Original Wikitext content:</h4>
!Notes
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This is the scale which occurs as the dominant major edX.
|-
| 6\5
|90.000
|Intense Aeolian-Subpental Dorian mode begins
|-
|17\14
| 91.071
|
|-
|11\9
|91.667
| Intense Aeolian-Subpental Dorian mode ends, Subpental Dorian mode begins
|-
|16\13
| 92.308
|
|-
|5\4
|93.750
|Subpental Dorian mode ends, Pental Dorian mode begins
|-
|24\19
|94.737
|
|-
|19\15
|95.000
|
|-
|14\11
|95.455
|Pental Dorian mode ends, Superpental Dorian mode begins
|-
|23\18
|95.833
|
|-
|9\7
|96.429
|Superpental Dorian mode ends, Mohajira Dorian-Mixolydian mode begins
|-
|31\24
|96.875
|
|-
|22\17
|97.059
|Mohajira Dorian-Mixolydian mode ends, Beatles Dorian-Mixolydian mode begins
|-
|35\27
|97.222
|
|-
| 13\10
|97.500
|Beatles Dorian-Mixolydian mode ends, Subpental Mixolydian mode begins
|-
|17\13
|98.077
|
|-
|21\16
|98.438
|Subpental Mixolydian mode ends, Pental Mixolydian mode begins
|-
|25\19
|98.684
|
|-
|29\22
|98.864
|
|-
|33\25
|99.000
|
|-
|4\3
|100.000
|Pental Mixolydian mode ends, Soft Superpental Mixolydian mode begins
|-
|19\14
|101.786
|
|-
|15\11
|102.273
|Soft Superpental Mixolydian mode ends, Intense Superpental Mixolydian mode begins
|-
|26\19
|102.632
|
|-
|11\8
|103.125
|Intense Superpental Mixolydian mode ends, Mixolydian-Ionian mode begins
|-
|18\13
|103.846
|
|-
|25\18
|104.167
|
|-
|7\5
|105.000
|Mixolydian-Ionian mode ends
|}Relative cents
{| class="wikitable" style="text-align: center"
!Degrees
! colspan="3" |Enneatonic
!Intense Aeolian-Subpental Dorian
!Dorian
!Dorian-Mixolydian
|-
|1
|1#/2b
|G#/Jb
|''G#/Ab''
|''90.625''
|''93.75''
|''96.875''
|-
|2
| 2
|J
|''A''
|''181.25''
|''187.5''
|''193.75''
|-
|3
|2#/3b
|J#/Ab
|''A#/Bb''
|''271.875''
|''281.25''
|''290.625''
|-
|4
|3
|J
|''B''
|''362.5''
|''375''
|''387.5''
|-
|5
|3#/4b
|J#/Ab
|B#/Cb
|''453.125''
|''468.75''
|''484.375''
|-
|6
|4
|A
|''C''
|''543.75''
|''562.5''
|''581.25''
|-
|7
|5
|A#/Bb
|''C#/Qb''
|''633.375''
|''656.25''
|''678.125''
|-
|8
|5#/6b
|B
|''Q''
|''725''
|''750''
|''775''
|-
|9
|6
|C
|''D''
|''815.625''
|''843.75''
|''871.875''
|-
|10
|6#/7b
| C#/Db
|D#/Sb
|''906.25''
|''937.5''
|''968.75''
|-
|11
|7
|D
|''S''
|''996.875''
|''1031.25''
|''1065.625''
|-
|12
| 7#/8b
|D#/Eb
|''S#/Eb''
|''1087.5''
|''1125''
|''1162.5''
|-
|13
|8
| colspan="2" | E
|''1178.125''
|''1218.75''
|''1259.375''
|-
|14
|8#/9b
| colspan="2" |E#/Fb
|''1268.75''
|''1312.5''
|''1356.25''
|-
|15
|9
| colspan="2" |F
|''1359.375''
|''1406.25''
|''1453.125''
|-
|16
|1
| colspan="2" |G
|''1450''
|''1500''
|''1550''
|}
{| class="wikitable" style="text-align: center"
!Degrees
! colspan="3" |Enneatonic
!Subpental-Soft Superpental Mixolydian
!Intense Superpental Mixolydian ~ Mixolydian-Ionian
|-
| |1
|1#/2b
| colspan="2" |F#/Gb
|''100''
|''103.125''
|-
| |2
|2
| colspan="2" |G
|''200''
|''206.25''
|-
| |3
|2#/3b
|G#/Jb
|''G#/Ab''
|''300''
|''309.375''
|-
| |4
|3
|J
|''A''
|''400''
|''412.5''
|-
| | 5
|3#/4b
|J#/Ab
|''A#/Bb''
|''500''
|''515.625''
|-
| |6
|4
|A
|''B''
|''600''
|''618.75''
|-
| | 7
|5
|B
|''H''
|''700''
|''721.875''
|-
|8
|5#/6b
|B#/Hb
|''H#/Cb''
|''800''
|''825''
|-
|9
|6
|H
|''C''
|''900''
|''928.125''
|-
|10
|6#/7b
|H#/Cb
|''C#/Db''
|''1000''
|''1031.25''
|-
|11
|7
|C
|''D''
|''1100''
|''1134.375''
|-
|12
|7#/8b
|C#/Db
|''D#/Sb''
|''1200''
|''1237.5''
|-
|13
|8
|D
|''S''
|''1300''
|''1340.625''
|-
|14
|8#/9b
| D#/Eb
|''S#/Eb''
|''1400''
|''1443.75''
|-
| 15
|9
| colspan="2" |E
|''1500''
|''1546.875''
|-
|16
|1
| colspan="2" |F
|''1600''
|''1650''
|}By a surprising coincidence, neutral 16edX turns out to be a false Pelogic temperament with a very pure 5:4 (mistuned by no more than 3.686 cents), and tuning 5:3 pure creates a tenth almost exactly equal to 38/29edo or almost exactly the Golden Subpental Mixolydian step or every ninth step of [[110edo]], and tuning 4:3 pure creates an almost exact 43/74edo fifth. Also, the Golden Soft Superpental Mixolydian step is almost exactly (25/24)^(10/7) and tuning 12:7 pure creates almost exactly the Golden Mixolydian-Ionian step.
==See also==
*[[16ed5/2]] - equal division of the classic major tenth
*[[16ed7/3]] - equal division of the septimal minor tenth


==Intervals==
[[Category:16-tone scales]]
||~ Degrees ||~ Enneatonic ||~ Minimum ||~ ed(7/3) ||~ Mean/Median ||~ Golden ||~ Maximum ||
[[Category:EdX]]
|| 1 || 1#/2b
D#/Eb || 90 || 91.679 || 97.5 || 99.2705 || 105 ||
|| 2 || 2
E || 180 || 183.358 || 195 || 198.541 || 210 ||
|| 3 || 2#/3b
E#/Fb || 270 || 275.038 || 292.5 || 297.811'5/1 || 315 ||
|| 4 || 3
F || 360 || 366.718 || 390 || 397.082 || 420 ||
|| 5 || 3#/4b
F#/Gb || 450 || 458.397 || 487.5 || 496.352'5 || 525 ||
|| 6 || 4
G || 540 || 550.077 || 585 || 595.623 || 630 ||
|| 7 || 5
H || 630 || 641.756 || 682.5 || 694.893 || 735 ||
|| 8 || 5#/6b
H#/Jb || 720 || 733.435'5 || 780 || 794.154 || 840 ||
|| 9 || 6
J || 810 || 825.115 || 877.5 || 893.435 || 945 ||
|| 10 || 6#/7b
J#/Ab || 900 || 916.794 || 975 || 992.705 || 1050 ||
|| 11 || 7
A || 990 || 1008.473 || 1072.5 || 1091.976 || 1155 ||
|| 12 || 7#/8b
A#/Bb || 1080 || 1100.153 || 1170 || 1191.246 || 1260 ||
|| 13 || 8
B || 1170 || 1191.833 || 1267.5 || 1290.517 || 1365 ||
|| 14 || 8#/9b
B#/Cb || 1260 || 1283.512 || 1365 || 1389.787 || 1470 ||
|| 15 || 9
C || 1350 || 1375.1915 || 1462.5 || 1489.058 || 1575 ||
|| 16 || 1
D || 1440 || 1466.871 || 1560 || 1588.328 || 1680 ||
 
By a surprising coincidence, neutral 16edX turns out to be a false Pelogic temperament with a very pure 5:4 (mistuned by no more than 3.596 cents), and tuning 5:3 pure creates a tenth almost exactly equal to 38/29edo, and tuning 4:3 pure creates an almost exact 43/74edo fifth.</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;16edX&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This is the scale which occurs as the dominant major edX.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Intervals&lt;/h2&gt;
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;Degrees&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Enneatonic&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Minimum&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;ed(7/3)&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Mean/Median&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Golden&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Maximum&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1#/2b&lt;br /&gt;
D#/Eb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;90&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;91.679&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;97.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;99.2705&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
E&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;180&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;183.358&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;195&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;198.541&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2#/3b&lt;br /&gt;
E#/Fb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;270&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;275.038&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;292.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;297.811'5/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;br /&gt;
F&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;360&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;366.718&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;390&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;397.082&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;420&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3#/4b&lt;br /&gt;
F#/Gb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;450&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;458.397&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;487.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;496.352'5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;525&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4&lt;br /&gt;
G&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;540&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550.077&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;585&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;595.623&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;630&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
H&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;630&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;641.756&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;682.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;694.893&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;735&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5#/6b&lt;br /&gt;
H#/Jb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;720&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;733.435'5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;780&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;794.154&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;840&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6&lt;br /&gt;
J&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;810&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;825.115&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;877.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;893.435&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;945&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6#/7b&lt;br /&gt;
J#/Ab&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;900&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;916.794&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;975&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;992.705&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1050&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
A&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;990&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1008.473&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1072.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1091.976&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1155&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7#/8b&lt;br /&gt;
A#/Bb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1080&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1100.153&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1170&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1191.246&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1260&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
B&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1170&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1191.833&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1267.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1290.517&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1365&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8#/9b&lt;br /&gt;
B#/Cb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1260&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1283.512&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1365&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1389.787&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1470&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
C&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1350&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1375.1915&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1462.5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1489.058&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1575&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1&lt;br /&gt;
D&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1440&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1466.871&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1560&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1588.328&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1680&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
By a surprising coincidence, neutral 16edX turns out to be a false Pelogic temperament with a very pure 5:4 (mistuned by no more than 3.596 cents), and tuning 5:3 pure creates a tenth almost exactly equal to 38/29edo, and tuning 4:3 pure creates an almost exact 43/74edo fifth.&lt;/body&gt;&lt;/html&gt;</pre></div>