|
|
(17 intermediate revisions by the same user not shown) |
Line 6: |
Line 6: |
| | MOS scales = [[3L 1s]], [[4L 3s]], [[4L 7s]], [[4L 11s]], [[15L 4s]] | | | MOS scales = [[3L 1s]], [[4L 3s]], [[4L 7s]], [[4L 11s]], [[15L 4s]] |
| | Mapping = 1; 6 5 14 | | | Mapping = 1; 6 5 14 |
| | Ploidacot = haploid alpha-hexacot
| |
| | Odd limit 1 = 5 | Mistuning 1 = 1.35 | Complexity 1 = 15 | | | Odd limit 1 = 5 | Mistuning 1 = 1.35 | Complexity 1 = 15 |
| | Odd limit 2 = (2.3.5.13) 15 | Mistuning 2 = 2.35 | Complexity 2 = 34 | | | Odd limit 2 = (2.3.5.13) 15 | Mistuning 2 = 2.35 | Complexity 2 = 34 |
| }} | | }} |
| : ''"Kleismic" redirects here. For the temperament families, see [[Kleismic family]] and [[Kleismic rank three family]].''
| | <br> |
| | | {{Infobox RT |
| '''Kleismic''', known in the [[5-limit]] as either '''hanson''' or simply '''kleismic''', is a [[rank-2 temperament|rank-2]] [[regular temperament|temperament]] and parent of the [[kleismic family]], characterized by the vanishing of the kleisma ([[15625/15552]]). It is [[generator|generated]] by a [[6/5|classical minor third (6/5)]], six of which make a [[3/1|twelfth (3/1)]].
| | | Title = Würschmidt |
| | | | Subgroups = 2.3.5, 2.3.5.23 |
| Another useful interpretation of the kleisma as a comma is that it makes the classical chromatic semitone, [[25/24]], into a third-tone by equating three of this interval to [[9/8]]. As 9/8 = (25/24)(26/25)(27/26), it is natural to equate 25/24 to [[26/25]] and [[27/26]] as well, thereby tempering out the marveltwin comma (S25 × S26 = [[325/324]]), and the tunbarsma (S25 = [[625/624]]), resulting in a low-complexity but high-accuracy [[extension]] to the 2.3.5.13 [[subgroup]], sometimes known as '''cata'''. As the chain of generators naturally gives us hemitwelfths at only 3 generator steps, this also corresponds directly to an interpretation of these as [[26/15]] (and thus hemifourths as [[15/13]]) by tempering out S26 = [[676/675]].
| | | Comma basis = [[393216/390625]] (2.3.5); <br> [[576/575]], [[12167/12150]] (2.3.5.23) |
| | | | Edo join 1 = 31 | Edo join 2 = 34 |
| Extensions with prime 7 include [[catakleismic]], [[countercata]], [[metakleismic]], [[keemun]], and [[catalan]]. Of these, catakleismic can perhaps be considered the canonical, as it makes a natural further equivalence of 25/24~26/25~27/26 to [[28/27]] and can be defined in the [[7-limit]] by tempering out [[225/224]] and [[4375/4374]].
| | | Generator = 5/4 | Generator tuning = 387.734 | Optimization method = CTE |
| | | | MOS scales = [[3L 1s]], [[3L 4s]] ... [[3L 28s]], [[31L 3s]] |
| For technical data, see [[Kleismic family #Hanson]].
| | | Mapping = 1; 8 1 14 |
| | | | Odd limit 1 = 5 | Mistuning 1 = 1.43 | Complexity 1 = 19 |
| == Interval chain ==
| | | Odd limit 2 = (2.3.5.23) 25 | Mistuning 2 = 2.86 | Complexity 2 = 34 |
| In the following table, odd harmonics 1–15 are labeled in '''bold'''.
| | }} |
| | |
| {| class="wikitable sortable center-1 right-2"
| |
| ! #
| |
| ! Cents*
| |
| ! class="unsortable" | Approximate ratios
| |
| |-
| |
| | 0
| |
| | 0.0
| |
| | '''1/1'''
| |
| |-
| |
| | 1
| |
| | 317.1
| |
| | 6/5
| |
| |-
| |
| | 2
| |
| | 634.2
| |
| | 36/25, 13/9
| |
| |-
| |
| | 3
| |
| | 950.3
| |
| | 26/15, 45/26
| |
| |-
| |
| | 4
| |
| | 68.4
| |
| | 25/24, 26/25, 27/26
| |
| |-
| |
| | 5
| |
| | 385.6
| |
| | '''5/4''', 81/65
| |
| |-
| |
| | 6
| |
| | 702.7
| |
| | '''3/2'''
| |
| |-
| |
| | 7
| |
| | 1019.8
| |
| | 9/5, 65/36
| |
| |-
| |
| | 8
| |
| | 136.9
| |
| | 13/12, 27/25
| |
| |-
| |
| | 9
| |
| | 454.0
| |
| | 13/10
| |
| |-
| |
| | 10
| |
| | 771.1
| |
| | 25/16, 39/25, 81/52
| |
| |-
| |
| | 11
| |
| | 1088.2
| |
| | '''15/8'''
| |
| |-
| |
| | 12
| |
| | 205.3
| |
| | '''9/8'''
| |
| |-
| |
| | 13
| |
| | 522.4
| |
| | 27/20, 65/48
| |
| |-
| |
| | 14
| |
| | 839.6
| |
| | '''13/8''', 81/50
| |
| |-
| |
| | 15
| |
| | 1156.7
| |
| | 39/20
| |
| |-
| |
| | 16
| |
| | 273.8
| |
| | 75/64
| |
| |-
| |
| | 17
| |
| | 590.9
| |
| | 45/32
| |
| |-
| |
| | 18
| |
| | 908.0
| |
| | 27/16
| |
| |-
| |
| | 19
| |
| | 25.1
| |
| | 65/64, 81/80
| |
| |}
| |
| <nowiki />* In 2.3.5.13-subgroup [[CTE tuning]] | |
| | |
| == Tunings ==
| |
| === Optimized tunings ===
| |
| {| class="wikitable mw-collapsible mw-collapsed" | |
| |+ style="font-size: 105%; white-space: nowrap;" | Prime-optimized tunings
| |
| |- | |
| ! Weight-skew\Order !! Euclidean
| |
| |-
| |
| | Tenney || (2.3.5) CTE: ~6/5 = 317.0308¢
| |
| |-
| |
| | Tenney || (2.3.5) POTE: ~6/5 = 317.007¢ | |
| |-
| |
| | Tenney || (2.3.5.13) CTE: ~6/5 = 317.1110¢
| |
| |-
| |
| | Tenney || (2.3.5.13) POTE: ~6/5 = 317.0756¢
| |
| |}
| |
| | |
| {| class="wikitable mw-collapsible mw-collapsed"
| |
| |+ style="font-size: 105%; white-space: nowrap;" | [[Delta-rational chord|DR]] and equal-beating tunings
| |
| |-
| |
| ! Optimized chord !! Generator value !! Polynomial !! Further notes
| |
| |-
| |
| | 3:4:5 (+1 +1) || ~6/5 = 317.1496 || ''g''<sup>6</sup> + 2''g''<sup>5</sup> − 8 = 0 || {{dash|1, 3, 5|med}} equal-beating tuning, close to 8/43-kleisma
| |
| |-
| |
| | 4:5:6 (+1 +1) || ~6/5 = 317.9593 || ''g''<sup>6</sup> − 2''g''<sup>5</sup> + 2 = 0 || {{dash|1, 3, 5|med}} equal-beating tuning, close to 2/7-kleisma
| |
| |-
| |
| | 10:12:15 (+2 +3) || ~6/5 = 317.6675 || ''g''<sup>6</sup> − 5''g'' + 3 = 0 || Close to 1/4-kleisma
| |
| |-
| |
| | 9:13:15 (+2 +1) || ~6/5 = 317.5679 || 3''g''<sup>3</sup> + 4''g'' − 10 = 0 || Close to 13/36-marveltwin comma
| |
| |-
| |
| | 13:15:18 (+2 +3) || ~6/5 = 317.0010 || 3''g''<sup>3</sup> − ''g'' − 4 = 0 || Close to 13/51-marveltwin comma
| |
| |}
| |
| | |
| === Tuning spectrum ===
| |
| {| class="wikitable center-all left-4"
| |
| ! EDO<br />generator
| |
| ! [[Eigenmonzo|Eigenmonzo<br />(unchanged interval)]]*
| |
| ! Generator (¢)
| |
| ! Comments
| |
| |-
| |
| |
| |
| | [[6/5]]
| |
| | 315.6413
| |
| | Untempered tuning, lower bound of 5-odd-limit diamond tradeoff
| |
| |-
| |
| | '''[[19edo|5\19]]'''
| |
| |
| |
| | '''315.7895'''
| |
| | '''Lower bound of 2.3.5.13-subgroup 15-odd-limit diamond monotone'''
| |
| |-
| |
| |
| |
| | [[27/26]]
| |
| | 316.3343
| |
| | 1/4-[[625/624|tunbarsma]] | |
| |- | |
| | [[110edo|29\110]]
| |
| |
| |
| | 316.3636
| |
| | 110ff val
| |
| |-
| |
| | [[91edo|24\91]]
| |
| |
| |
| | 316.4835
| |
| | 91f val
| |
| |-
| |
| |
| |
| | [[27/25]]
| |
| | 316.6547
| |
| | 1/8-kleisma
| |
| |-
| |
| | [[72edo|19\72]]
| |
| |
| |
| | 316.6667
| |
| |
| |
| |-
| |
| |
| |
| | [[9/5]]
| |
| | 316.7995
| |
| | 1/7-kleisma
| |
| |-
| |
| | [[125edo|33\125]]
| |
| |
| |
| | 316.8000
| |
| | 125f val
| |
| |-
| |
| |
| |
| | [[26/25]]
| |
| | 316.9750
| |
| | 1/4-[[325/324|marveltwin comma]]
| |
| |-
| |
| | [[53edo|14\53]]
| |
| |
| |
| | 316.9811
| |
| |
| |
| |-
| |
| | | |
| | [[3/2]] | |
| | 316.9925
| |
| | 1/6-kleisma
| |
| |-
| |
| |
| |
| | [[75/52]]
| |
| | 317.0274
| |
| | 1/2-tunbarsma
| |
| |-
| |
| | [[193edo|51\193]]
| |
| |
| |
| | 317.0984
| |
| |
| |
| |-
| |
| |
| |
| | [[15/8]]
| |
| | 317.1153
| |
| | 2/11-kleisma
| |
| |-
| |
| | [[333edo|88\333]]
| |
| |
| |
| | 317.1171
| |
| |
| |
| |-
| |
| |
| |
| | [[13/10]]
| |
| | 317.1349
| |
| |
| |
| |-
| |
| | [[140edo|37\140]]
| |
| |
| |
| | 317.1429
| |
| |
| |
| |-
| |
| |
| |
| | [[13/8]]
| |
| | 317.1805
| |
| |
| |
| |-
| |
| | [[227edo|60\227]]
| |
| |
| |
| | 317.1807
| |
| |
| |
| |-
| |
| | [[87edo|23\87]]
| |
| |
| |
| | 317.2414
| |
| |
| |
| |-
| |
| |
| |
| | [[5/4]]
| |
| | 317.2627
| |
| | 1/5-kleisma, upper bound of 5-odd-limit diamond tradeoff
| |
| |-
| |
| |
| |
| | [[13/12]]
| |
| | 317.3216 | |
| |
| |
| |-
| |
| | [[121edo|32\121]]
| |
| |
| |
| | 317.3554
| |
| |
| |
| |-
| |
| | [[155edo|41\155]]
| |
| |
| |
| | 317.4194
| |
| |
| |
| |-
| |
| |
| |
| | [[15/13]]
| |
| | 317.4197
| |
| | 1/3-marveltwin comma
| |
| |-
| |
| | [[34edo|9\34]]
| |
| |
| |
| | 317.6471
| |
| |
| |
| |-
| |
| |
| |
| | [[25/24]]
| |
| | 317.6681
| |
| | 1/4-kleisma, virtually [[Delta-rational chord|DR]] 10:12:15
| |
| |-
| |
| | [[83edo|22\83]]
| |
| |
| |
| | 318.0723
| |
| | 83f val
| |
| |-
| |
| |
| |
| | [[13/9]]
| |
| | 318.3088
| |
| | 1/2-marveltwin comma, upper bound of 2.3.5.13-subgroup 15-odd-limit diamond tradeoff | |
| |-
| |
| |
| |
| | [[125/72]]
| |
| | 318.3437
| |
| | 1/3-kleisma | |
| |-
| |
| | [[49edo|13\49]]
| |
| |
| |
| | 318.3673
| |
| | 49f val
| |
| |-
| |
| |
| |
| | [[125/104]]
| |
| | 318.4135
| |
| | Full tunbarsma
| |
| |-
| |
| |
| |
| | [[625/432]]
| |
| | 319.6949
| |
| | 1/2-kleisma | |
| |- | |
| | '''[[15edo|4\15]]'''
| |
| |
| |
| | '''320.0000'''
| |
| | '''Upper bound of 2.3.5.13-subgroup 15-odd-limit diamond monotone'''
| |
| |-
| |
| |
| |
| | [[65/54]]
| |
| | 320.9764
| |
| | Full marveltwin comma
| |
| |}
| |
| <nowiki />* Besides the octave
| |
| | |
| === Other tunings ===
| |
| * [[DKW theory|DKW]] (2.3.5): ~2 = 1\1, ~6/5 = 317.1983
| |
| | |
| == Scales ==
| |
| * [[Cata7]]
| |
| * [[Cata11]]
| |
| * [[Cata15]]
| |
| * [[Cata19]]
| |
| | |
| == Music ==
| |
| ; [[Petr Pařízek]]
| |
| * [https://web.archive.org/web/20201127013042/http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Parizek/Hanson%20%20Improv.mp3 ''Hanson Improv'']
| |
| | |
| ; [[Chris Vaisvil]]
| |
| * [http://clones.soonlabel.com/public/micro/Hanson/daily20110127-in-hanson11.mp3 ''In Hanson11'']
| |
| | |
| == External links ==
| |
| * [http://dkeenan.com/Music/ChainOfMinor3rds.htm ''11 note chain-of-minor-thirds scale''], by [[David Keenan]]
| |
| | |
| [[Category:Temperaments]]
| |
| [[Category:Hanson]] <!-- Main article -->
| |
| [[Category:Cata| ]] <!-- Main article -->
| |
| [[Category:Kleismic| ]] <!-- Main article -->
| |
| [[Category:Kleismic family]]
| |