32edt: Difference between revisions
No edit summary |
m Replace wide table w 2 short tables |
||
Line 2: | Line 2: | ||
'''32EDT''' is the [[Edt|equal division of the third harmonic]] into 32 parts of 59.4361 [[cent|cents]] each, corresponding to 20.1898 [[edo]]. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, 17, and 19 are all sharp. It tempers out 3125/3087 and 885735/823543 in the 7-limit; 891/875, 1331/1323, and 2475/2401 in the 11-limit; 275/273, 351/343, 729/715, and 847/845 in the 13-limit; 121/119, 189/187, 225/221, 459/455, and 845/833 in the 17-limit; 135/133, 171/169, 247/245, 325/323, and 363/361 in the 19-limit (no-twos subgroup). It is the eighth [[The_Riemann_Zeta_Function_and_Tuning#Removing primes|zeta peak tritave division]]. | '''32EDT''' is the [[Edt|equal division of the third harmonic]] into 32 parts of 59.4361 [[cent|cents]] each, corresponding to 20.1898 [[edo]]. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, 17, and 19 are all sharp. It tempers out 3125/3087 and 885735/823543 in the 7-limit; 891/875, 1331/1323, and 2475/2401 in the 11-limit; 275/273, 351/343, 729/715, and 847/845 in the 13-limit; 121/119, 189/187, 225/221, 459/455, and 845/833 in the 17-limit; 135/133, 171/169, 247/245, 325/323, and 363/361 in the 19-limit (no-twos subgroup). It is the eighth [[The_Riemann_Zeta_Function_and_Tuning#Removing primes|zeta peak tritave division]]. | ||
{{Harmonics in equal| | ==Harmonics== | ||
{{Harmonics in equal | |||
| steps = 19 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = prime | |||
}} | |||
{{Harmonics in equal | |||
| steps = 19 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = prime | |||
}} | |||
== Intervals == | == Intervals == |