Biyatismic clan: Difference between revisions

Godtone (talk | contribs)
Eros: explain why it's impressive
Godtone (talk | contribs)
m Eros: add credit
Line 216: Line 216:


==== Eros ====
==== Eros ====
Eros fairs impressively into the 23-limit as a rank 3 temperament; not only is it fairly simple (considering this a subgroup as complex as the full 23-limit, with many challenges) but all the generators are positive (or only 1 into the negatives in the case of the fifth) meaning it's even simpler than it might appear and has the pleasing property of all harmonics and subharmonics being "on the same side"; specifically: -3 to 1 fifths ([[2L 3s]]) and -5 to 0 ~[[23/22]]'s will get you every prime, up to octave equivalence; you can think of this as a 5 by 6 grid if you like and is a recommendable place to start looking at its structure. Tempering the less accurate comma [[121/120|S11]] can be seen as a consequence of tempering {[[441/440|S21]], [[484/483|S22]], [[529/528|S23]]} so is very natural and given its properties certainly excusable. Therefore characteristic of any good tuning is the ~11 being the most flat prime, with other primes having strictly less than 5{{cent}} of error.
Eros fairs impressively into the 23-limit as a rank 3 temperament; not only is it fairly simple (considering this a subgroup as complex as the full 23-limit, with many challenges) but all the generators are positive (or only 1 into the negatives in the case of the fifth) meaning it's even simpler than it might appear and has the pleasing property of all harmonics and subharmonics being "on the same side"; specifically: -3 to 1 fifths ([[2L 3s]]) and -5 to 0 ~[[23/22]]'s will get you every prime, up to octave equivalence; you can think of this as a 5 by 6 grid if you like and is a recommendable place to start looking at its structure. Tempering the less accurate comma [[121/120|S11]] can be seen as a consequence of tempering {[[441/440|S21]], [[484/483|S22]], [[529/528|S23]]} so is very natural and given its properties certainly excusable. Therefore characteristic of any good tuning is the ~11 being the most flat prime, with other primes having strictly less than 5{{cent}} of error. This temperament was first logged on x31eq by [[Scott Dakota]].


Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13