Prime harmonic series: Difference between revisions
Wikispaces>FREEZE No edit summary |
m Added to category "xenharmonic series" |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
The '''acoustic prime harmonic series''' is similar to the set of [[ | The '''acoustic prime harmonic series''' is similar to the set of [[prime number]]s, except that it begins with 1, and skips 2 because of [[octave equivalence]] : 1, 3, 5, 7, 11, 13 etc. | ||
If “new” pitch classes in the harmonic series are always odd numbers (even numbers are always octave duplications), the question is whether there is a useful acoustic/musical distinction between odd composites and primes. The test case is 9, which is the first odd numbered partial that is composite. | If “new” pitch classes in the harmonic series are always odd numbers (even numbers are always octave duplications), the question is whether there is a useful acoustic/musical distinction between odd composites and primes. The test case is 9, which is the first odd numbered partial that is composite. | ||
Line 9: | Line 9: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
| N (primes) | |||
| scale | |||
|- | |- | ||
| 1 (1) | |||
| 1/1 | |||
|- | |- | ||
| 2 (1,3) | |||
| 1/1, 3/2 | |||
|- | |- | ||
| 3 (1,3,5) | |||
| 1/1, 5/4, 3/2 | |||
|- | |- | ||
| 4 (1,3,5,7) | |||
| 1/1, 5/4, 3/2, 7/4 | |||
|- | |- | ||
| 5 (1,3,5,7,11) | |||
| 1/1, 5/4, 11/8, 3/2, 7/4 (pentatonic) | |||
|- | |- | ||
| 6 (1,3,5,7,11,13) | |||
| 1/1, 5/4, 11/8, 3/2, 13/8, 7/4 (hexatonic) | |||
|- | |- | ||
| 7 (1,3,5,7,11,13,17) | |||
| 1/1, 17/16, 5/4, 11/8, 3/2, 13/8, 7/4 (heptatonic) | |||
|- | |- | ||
| 8 (1,3,5,7,11,13,17,19) | |||
| 1/1, 17/16, 19/16, 5/4, 11/8, 3/2, 13/8, 7/4 (octatonic) | |||
|- | |- | ||
| 9 (1,3,5,7,11,13,17,19,23) | |||
| 1/1, 17/16, 19/16, 5/4, 11/8, 23/16, 3/2, 13/8, 7/4 (nonotonic) | |||
|- | |- | ||
| 10 (1,3,5,7,11,13,17,19,23,29) | |||
| 1/1, 17/16, 19/16, 5/4, 11/8, 23/16, 3/2, 13/8, 7/4, 29/16 (decatonic) | |||
|- | |- | ||
| 11 (1,3,5,7,11,13,17,19,23,29,31) | |||
| 1/1, 17/16, 19/16, 5/4, 11/8, 23/16, 3/2, 13/8, 7/4, 29/16, 31/16 (hendecatonic) | |||
|- | |- | ||
| 12 (1,3,5,7,11,13,17,19,23,29,31,37) | |||
| 1/1, 17/16, 37/32, 19/16, 5/4, 11/8, 23/16, 3/2, 13/8, 7/4, 29/16, 31/16 (dodecatonic) | |||
|} | |} | ||
Line 61: | Line 61: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
| 17/16 | |||
| 20/17 | |||
| 22/20 <br> (11/10) | |||
| 24/22 <br> (12/11) | |||
(11/10) | | 26/24 <br> (13/12) | ||
| 28/26 <br> (14/13) | |||
| 32/28 <br> (8/7) | |||
(12/11) | |||
(13/12) | |||
(14/13) | |||
(8/7) | |||
|- | |- | ||
| 104.96 | |||
| 281.36 | |||
| 165 | |||
| 150.64 | |||
| 138.57 | |||
| 128.3 | |||
| 231.17 | |||
|} | |} | ||
Line 96: | Line 86: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
| 34/32 <br> (17/16) | |||
| 37/34 | |||
(17/16) | | 38/37 | ||
| 40/38 <br> (20/19) | |||
| 44/40 <br> (11/10) | |||
| 46/44 <br> (23/22) | |||
| 48/46 <br> (24/23) | |||
(20/19) | | 52/48 <br> (13/12) | ||
| 56/52 <br> (14/13) | |||
| 58/56 <br> (29/28) | |||
(11/10) | | 62/58 <br> (31/29) | ||
| 64/62 <br> (32/31) | |||
(23/22) | |||
(24/23) | |||
(13/12) | |||
(14/13) | |||
(29/28) | |||
(31/29) | |||
(32/31) | |||
|- | |- | ||
| 104.96 | |||
| 146.39 | |||
| 46.17 | |||
| 88.8 | |||
| 165 | |||
| 76.96 | |||
| 73.68 | |||
| 138.57 | |||
| 128.3 | |||
| 60.75 | |||
| 115.46 | |||
| 54.97 | |||
|} | |} | ||
Line 163: | Line 133: | ||
<span style="font-size: 90%;">Because the lowest partial is 17, there are no familiar lower prime limit intervals like octaves (2/1), fifths (3/2), thirds (5/4), etc. Nevertheless, some intervals between higher primes approximate the lower prime limit intervals (e.g. 61/31 is very close to an octave), without of course reproducing them exactly." [http://users.rcn.com/dante.interport//justguitar.html (original page source)]</span> | <span style="font-size: 90%;">Because the lowest partial is 17, there are no familiar lower prime limit intervals like octaves (2/1), fifths (3/2), thirds (5/4), etc. Nevertheless, some intervals between higher primes approximate the lower prime limit intervals (e.g. 61/31 is very close to an octave), without of course reproducing them exactly." [http://users.rcn.com/dante.interport//justguitar.html (original page source)]</span> | ||
<span style="font-size: 90%;">[http://www.youtube.com/watch?v=tP9iafbjlOw "Tarkovsky's Mirror" for prime guitar by Dante Rosati]</span> | <span style="font-size: 90%;">[http://www.youtube.com/watch?v=tP9iafbjlOw "Tarkovsky's Mirror" for prime guitar by Dante Rosati]</span> | ||
[[Category:intervals]] | |||
[[Category: | {| class="wikitable" | ||
[[Category: | |+prime harmonics through the 6th octave of the harmonic series | ||
[[Category: | |'''prime harmonic''' | ||
|'''cents (octave reduced)''' | |||
|'''sorted''' | |||
|'''delta''' | |||
|- | |||
|2 | |||
|0 | |||
|0 | |||
|104.9554095 | |||
|- | |||
|3 | |||
|701.9550009 | |||
|104.9554095 | |||
|146.3886293 | |||
|- | |||
|5 | |||
|386.3137139 | |||
|251.3440388 | |||
|46.16897738 | |||
|- | |||
|7 | |||
|968.8259065 | |||
|297.5130161 | |||
|88.80069773 | |||
|- | |||
|11 | |||
|551.3179424 | |||
|386.3137139 | |||
|42.74869168 | |||
|- | |||
|13 | |||
|840.5276618 | |||
|429.0624055 | |||
|82.4553001 | |||
|- | |||
|17 | |||
|104.9554095 | |||
|511.5177056 | |||
|39.80023672 | |||
|- | |||
|19 | |||
|297.5130161 | |||
|551.3179424 | |||
|76.9564049 | |||
|- | |||
|23 | |||
|628.2743473 | |||
|628.2743473 | |||
|37.23227474 | |||
|- | |||
|29 | |||
|1029.577194 | |||
|665.506622 | |||
|36.44837885 | |||
|- | |||
|31 | |||
|1145.035572 | |||
|701.9550009 | |||
|138.5726609 | |||
|- | |||
|37 | |||
|251.3440388 | |||
|840.5276618 | |||
|32.97688371 | |||
|- | |||
|41 | |||
|429.0624055 | |||
|873.5045455 | |||
|95.32136099 | |||
|- | |||
|43 | |||
|511.5177056 | |||
|968.8259065 | |||
|60.75128768 | |||
|- | |||
|47 | |||
|665.506622 | |||
|1029.577194 | |||
|29.59446508 | |||
|- | |||
|53 | |||
|873.5045455 | |||
|1059.171659 | |||
|57.71314584 | |||
|- | |||
|59 | |||
|1059.171659 | |||
|1116.884805 | |||
|28.15076739 | |||
|- | |||
|61 | |||
|1116.884805 | |||
|1145.035572 | |||
|54.964428 | |||
|} | |||
[[Category:Harmonic series]] | |||
[[Category:Lists of intervals]] | |||
[[Category:Just intonation]] | |||
[[Category:Prime]] | |||
[[Category:Xenharmonic series]] |