6181edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 6180edt 6181edt 6182edt →
Prime factorization 7 × 883
Step size 0.30771 ¢ 
Octave 3900\6181edt (1200.07 ¢)
Consistency limit 6
Distinct consistency limit 6

6181 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 6181edt or 6181ed3), is a nonoctave tuning system that divides the interval of 3/1 into 6181 equal parts of about 0.308 ¢ each. Each step represents a frequency ratio of 31/6181, or the 6181st root of 3.

6181edt supports Izar, being a nearly optimal tuning of that temperament. It is consistent to the no-evens 35-throdd limit, and excluding the high primes 37, 47, 53, and 61, to the 65-throdd limit as well.

Harmonics

Approximation of prime harmonics in 6181edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +0.069 +0.000 -0.000 -0.018 -0.003 +0.034 -0.059 +0.009 +0.036
Relative (%) +22.3 +0.0 -0.1 -5.8 -1.1 +11.1 -19.3 +3.1 +11.8
Steps
(reduced)
3900
(3900)
6181
(0)
9055
(2874)
10948
(4767)
13491
(1129)
14431
(2069)
15940
(3578)
16566
(4204)
17641
(5279)
Approximation of odd harmonics in 6181edt
Harmonic 25 27 29 31 33 35 37 39 41
Error Absolute (¢) -0.001 +0.000 -0.013 -0.080 -0.003 -0.018 +0.091 +0.034 -0.079
Relative (%) -0.3 +0.0 -4.2 -26.0 -1.1 -5.9 +29.5 +11.1 -25.7
Steps
(reduced)
18110
(5748)
18543
(0)
18945
(402)
19320
(777)
19672
(1129)
20003
(1460)
20316
(1773)
20612
(2069)
20893
(2350)
Approximation of odd harmonics in 6181edt (continued)
Harmonic 43 45 47 49 51 53 55 57 59 61 63 65
Error Absolute (¢) -0.068 -0.000 +0.106 -0.035 -0.059 +0.120 -0.004 +0.009 +0.002 +0.138 -0.018 +0.034
Relative (%) -22.1 -0.1 +34.3 -11.5 -19.3 +38.9 -1.3 +3.1 +0.5 +44.8 -5.8 +11.0
Steps
(reduced)
21161
(2618)
21417
(2874)
21662
(3119)
21896
(3353)
22121
(3578)
22338
(3795)
22546
(4003)
22747
(4204)
22941
(4398)
23129
(4586)
23310
(4767)
23486
(4943)
This page is a stub. You can help the Xenharmonic Wiki by expanding it.