25edo

Revision as of 22:12, 31 May 2011 by Wikispaces>jdfreivald (**Imported revision 233346970 - Original comment: Added comma table.**)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author jdfreivald and made on 2011-05-31 22:12:58 UTC.
The original revision id was 233346970.
The revision comment was: Added comma table.

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #006b2e;">25 tone equal temperament</span>= 

25EDO divides the octave in 25 equal steps of exact size 48 cents each. It is a good way to tune the Blackwood temperament, which takes the very sharp fifths of [[5EDO]] as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 and 7.

25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 [[Just intonation subgroups|subgroup]] tuning. Looking just at 2, 5, and 7, it equates five 8/7s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a 128/125 diesis and two septimal tritones of 7/5 with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is [[50EDO]].

If 5/4 and 7/4 aren't good enough, it also does 17/16 and 19/16, just like 12EDO. In fact, on the [[k*N subgroups|2*25 subgroup]] 2.9.5.7.33.39.17.19 it provides the same tuning and tempers out the same commas as 50et, which makes for wide range of harmony.

Some example of a keyboard in 25-EDO

[[image:mm25.PNG]]

==Intervals== 

|| Degrees of 25-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 48 ||
|| 2 || 96 ||
|| 3 || 144 ||
|| 4 || 192 ||
|| 5 || 240 ||
|| 6 || 288 ||
|| 7 || 336 ||
|| 8 || 384 ||
|| 9 || 432 ||
|| 10 || 480 ||
|| 11 || 528 ||
|| 12 || 576 ||
|| 13 || 624 ||
|| 14 || 672 ||
|| 15 || 720 ||
|| 16 || 768 ||
|| 17 || 816 ||
|| 18 || 864 ||
|| 19 || 912 ||
|| 20 || 960 ||
|| 21 || 1008 ||
|| 22 || 1056 ||
|| 23 || 1104 ||
|| 24 || 1152 ||
==Commas== 
25 EDO tempers out the following commas. (Note: This assumes the val < 25 40 58 70 86 93 |.)
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 ||
|| 256/243 || | 8 -5 > || 90.22 || Limma || Pythagorean Minor 2nd ||   ||
|| 3125/3072 || | -10 -1 5 > || 29.61 || Small Diesis || Magic Comma ||   ||
|| 6719816/6714445 || | 38 -2 -15 > || 1.38 || Hemithirds Comma ||   ||   ||
|| 49/48 || | -4 -1 0 2 > || 35.70 || Slendro Diesis ||   ||   ||
|| 64/63 || | 6 -2 0 -1 > || 27.26 || Septimal Comma || Archytas' Comma || Leipziger Komma ||
|| 3125/3087 || | 0 -2 5 -3 > || 21.18 || Gariboh ||   ||   ||
|| 50421/50000 || | -4 1 -5 5 > || 14.52 || Trimyna ||   ||   ||
|| 1029/1024 || | -10 1 0 3 > || 8.43 || Gamelisma ||   ||   ||
|| 3136/3125 || | 6 0 -5 2 > || 6.08 || Hemimean ||   ||   ||
|| 65625/65536 || | -16 1 5 1 > || 2.35 || Horwell ||   ||   ||
|| 100/99 || | 2 -2 2 0 -1 > || 17.40 || Ptolemisma ||   ||   ||
|| 176/175 || | 4 0 -2 -1 1 > || 9.86 || Valinorsma ||   ||   ||
|| 16807/16384 || | -14 0 0 5 0 0 > || 44.13 ||   ||   ||   ||
|| 91/90 || | -1 -2 -1 1 0 1 > || 19.13 || Superleap ||   ||   ||
|| 676/675 || | 2 -3 -2 0 0 2 > || 2.56 || Parizeksma ||   ||   ||

Original HTML content:

<html><head><title>25edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x25 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #006b2e;">25 tone equal temperament</span></h1>
 <br />
25EDO divides the octave in 25 equal steps of exact size 48 cents each. It is a good way to tune the Blackwood temperament, which takes the very sharp fifths of <a class="wiki_link" href="/5EDO">5EDO</a> as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 and 7.<br />
<br />
25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 <a class="wiki_link" href="/Just%20intonation%20subgroups">subgroup</a> tuning. Looking just at 2, 5, and 7, it equates five 8/7s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a 128/125 diesis and two septimal tritones of 7/5 with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is <a class="wiki_link" href="/50EDO">50EDO</a>.<br />
<br />
If 5/4 and 7/4 aren't good enough, it also does 17/16 and 19/16, just like 12EDO. In fact, on the <a class="wiki_link" href="/k%2AN%20subgroups">2*25 subgroup</a> 2.9.5.7.33.39.17.19 it provides the same tuning and tempers out the same commas as 50et, which makes for wide range of harmony.<br />
<br />
Some example of a keyboard in 25-EDO<br />
<br />
<!-- ws:start:WikiTextLocalImageRule:390:&lt;img src=&quot;/file/view/mm25.PNG/179204243/mm25.PNG&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/mm25.PNG/179204243/mm25.PNG" alt="mm25.PNG" title="mm25.PNG" /><!-- ws:end:WikiTextLocalImageRule:390 --><br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x25 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
 <br />


<table class="wiki_table">
    <tr>
        <td>Degrees of 25-EDO<br />
</td>
        <td>Cents value<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>48<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>96<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>144<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>192<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>240<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>288<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>336<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>384<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>432<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>480<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>528<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>576<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>624<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>672<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>720<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>768<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>816<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>864<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>912<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>960<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>1008<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>1056<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>1104<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>1152<br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x25 tone equal temperament-Commas"></a><!-- ws:end:WikiTextHeadingRule:4 -->Commas</h2>
 25 EDO tempers out the following commas. (Note: This assumes the val &lt; 25 40 58 70 86 93 |.)<br />


<table class="wiki_table">
    <tr>
        <th>Comma<br />
</th>
        <th>Monzo<br />
</th>
        <th>Value (Cents)<br />
</th>
        <th>Name 1<br />
</th>
        <th>Name 2<br />
</th>
        <th>Name 3<br />
</th>
    </tr>
    <tr>
        <td>256/243<br />
</td>
        <td>| 8 -5 &gt;<br />
</td>
        <td>90.22<br />
</td>
        <td>Limma<br />
</td>
        <td>Pythagorean Minor 2nd<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3125/3072<br />
</td>
        <td>| -10 -1 5 &gt;<br />
</td>
        <td>29.61<br />
</td>
        <td>Small Diesis<br />
</td>
        <td>Magic Comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6719816/6714445<br />
</td>
        <td>| 38 -2 -15 &gt;<br />
</td>
        <td>1.38<br />
</td>
        <td>Hemithirds Comma<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>49/48<br />
</td>
        <td>| -4 -1 0 2 &gt;<br />
</td>
        <td>35.70<br />
</td>
        <td>Slendro Diesis<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>64/63<br />
</td>
        <td>| 6 -2 0 -1 &gt;<br />
</td>
        <td>27.26<br />
</td>
        <td>Septimal Comma<br />
</td>
        <td>Archytas' Comma<br />
</td>
        <td>Leipziger Komma<br />
</td>
    </tr>
    <tr>
        <td>3125/3087<br />
</td>
        <td>| 0 -2 5 -3 &gt;<br />
</td>
        <td>21.18<br />
</td>
        <td>Gariboh<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>50421/50000<br />
</td>
        <td>| -4 1 -5 5 &gt;<br />
</td>
        <td>14.52<br />
</td>
        <td>Trimyna<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1029/1024<br />
</td>
        <td>| -10 1 0 3 &gt;<br />
</td>
        <td>8.43<br />
</td>
        <td>Gamelisma<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3136/3125<br />
</td>
        <td>| 6 0 -5 2 &gt;<br />
</td>
        <td>6.08<br />
</td>
        <td>Hemimean<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>65625/65536<br />
</td>
        <td>| -16 1 5 1 &gt;<br />
</td>
        <td>2.35<br />
</td>
        <td>Horwell<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>100/99<br />
</td>
        <td>| 2 -2 2 0 -1 &gt;<br />
</td>
        <td>17.40<br />
</td>
        <td>Ptolemisma<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>176/175<br />
</td>
        <td>| 4 0 -2 -1 1 &gt;<br />
</td>
        <td>9.86<br />
</td>
        <td>Valinorsma<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16807/16384<br />
</td>
        <td>| -14 0 0 5 0 0 &gt;<br />
</td>
        <td>44.13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>91/90<br />
</td>
        <td>| -1 -2 -1 1 0 1 &gt;<br />
</td>
        <td>19.13<br />
</td>
        <td>Superleap<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>676/675<br />
</td>
        <td>| 2 -3 -2 0 0 2 &gt;<br />
</td>
        <td>2.56<br />
</td>
        <td>Parizeksma<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

</body></html>