253edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Osmiorisbendi and made on 2011-03-02 16:37:59 UTC.
- The original revision id was 206677548.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #630080; font-size: 113%;">253 tone equal temperament</span>= 253edo divides the octave in steps of 4,743083 Cents. 253edo contains an aproximation of the Perfect Fifth of **701,976285 Cents (step 148\253)**. It is practically PERFECT. **253 tone equal modes** 43 43 19 43 43 43 19: MOS of 5L 2s (Superpytagorean Tuning) 41 41 24 41 41 41 24: Meantonic Tuning MOS 33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning) 31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS
Original HTML content:
<html><head><title>253edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x253 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #630080; font-size: 113%;">253 tone equal temperament</span></h1> <br /> 253edo divides the octave in steps of 4,743083 Cents. 253edo contains an aproximation of the Perfect Fifth of <strong>701,976285 Cents (step 148\253)</strong>. It is practically PERFECT.<br /> <br /> <strong>253 tone equal modes</strong><br /> <br /> 43 43 19 43 43 43 19: MOS of 5L 2s (Superpytagorean Tuning)<br /> 41 41 24 41 41 41 24: Meantonic Tuning MOS<br /> 33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning)<br /> 31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS</body></html>