253edo

Revision as of 13:14, 15 August 2015 by Wikispaces>genewardsmith (**Imported revision 556732633 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2015-08-15 13:14:18 UTC.
The original revision id was 556732633.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #590059; font-family: 'Times New Roman',Times,serif; font-size: 113%;">253 tone equal temperament</span>= 

**//253-EDO//** or **253-tET** divides the octave into 253 equal steps of 4.743083 cents each. It approximates the fifth by **148\253**, which is 701.976285 cents, a mere **0.004487 cents sharp**. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic family|sesquiquartififths]] temperament.

__**253 tone equal modes:**__
63 32 63 63 32: [[3L 2s|Pentatonic]]
43 43 19 43 43 43 19: [[5L 2s|Pythagorean tuning]]
41 41 24 41 41 41 24: [[Meantone|Meantonic tuning]]
35 35 35 35 35 35 35 8: [[7L 1s|Porcupine tuning]]
33 33 33 11 33 33 33 33 11: [[23edo|"The Hendecapliqued superdiatonic of the Icositriphony"]]
31 31 31 18 31 31 31 31 18: [[7L 2s|Superdiatonic tuning]] in the way of Mavila
26 26 15 26 26 26 15 26 26 26 15: [[sensi11|Sensi tuning]]
20 20 20 11 20 20 20 20 11 20 20 20 20 11: [[11L 3s|Ketradektriatoh tuning]]
**PRIME FACTORIZATION:**
253 = [[11edo|11]] * [[23edo|23]]

Original HTML content:

<html><head><title>253edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x253 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #590059; font-family: 'Times New Roman',Times,serif; font-size: 113%;">253 tone equal temperament</span></h1>
 <br />
<strong><em>253-EDO</em></strong> or <strong>253-tET</strong> divides the octave into 253 equal steps of 4.743083 cents each. It approximates the fifth by <strong>148\253</strong>, which is 701.976285 cents, a mere <strong>0.004487 cents sharp</strong>. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit <a class="wiki_link" href="/Schismatic%20family">sesquiquartififths</a> temperament.<br />
<br />
<u><strong>253 tone equal modes:</strong></u><br />
63 32 63 63 32: <a class="wiki_link" href="/3L%202s">Pentatonic</a><br />
43 43 19 43 43 43 19: <a class="wiki_link" href="/5L%202s">Pythagorean tuning</a><br />
41 41 24 41 41 41 24: <a class="wiki_link" href="/Meantone">Meantonic tuning</a><br />
35 35 35 35 35 35 35 8: <a class="wiki_link" href="/7L%201s">Porcupine tuning</a><br />
33 33 33 11 33 33 33 33 11: <a class="wiki_link" href="/23edo">&quot;The Hendecapliqued superdiatonic of the Icositriphony&quot;</a><br />
31 31 31 18 31 31 31 31 18: <a class="wiki_link" href="/7L%202s">Superdiatonic tuning</a> in the way of Mavila<br />
26 26 15 26 26 26 15 26 26 26 15: <a class="wiki_link" href="/sensi11">Sensi tuning</a><br />
20 20 20 11 20 20 20 20 11 20 20 20 20 11: <a class="wiki_link" href="/11L%203s">Ketradektriatoh tuning</a><br />
<strong>PRIME FACTORIZATION:</strong><br />
253 = <a class="wiki_link" href="/11edo">11</a> * <a class="wiki_link" href="/23edo">23</a></body></html>