1L 9s

Revision as of 10:53, 6 November 2015 by Wikispaces>JosephRuhf (**Imported revision 565454719 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2015-11-06 10:53:18 UTC.
The original revision id was 565454719.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the "Happy" decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.
||||||||||~ Generator
(octave fraction) ||~ Generator
(cents) ||~ Comments ||
|| 0\1 ||   ||   ||   ||   || 0 ||=   ||
||   ||   ||   ||   || 1\14 || 85.714 ||=   ||
||   ||   ||   || 1\13 ||   || 92.308 ||= L/s = 4 ||
||   ||   ||   ||   || 2\25 || 96 ||=   ||
||   ||   ||   ||   ||   || 1200/(9+pi) ||   ||
||   ||   || 1\12 ||   ||   || 100 ||= L/s = 3 ||
||   ||   ||   ||   ||   || 1200/(9+e) ||   ||
||   ||   ||   ||   || 3\35 || 102.857 ||=   ||
||   ||   ||   ||   ||   || 1200/(10+phi) ||   ||
||   ||   ||   || 2\23 ||   || 104.348 ||=   ||
||   ||   ||   ||   || 3\34 || 105.882 ||=   ||
||   || 1\11 ||   ||   ||   || 109.091 ||=   ||
||   ||   ||   ||   ||   || 1200/(9+sqrt(3)) ||   ||
||   ||   ||   ||   || 4\43 || 111.628 ||=   ||
||   ||   ||   || 3\32 ||   || 112.5 ||=   ||
||   ||   ||   ||   ||   || 1200/(9+phi) ||   ||
||   ||   ||   ||   || 5\53 || 113.2075 ||=   ||
||   ||   ||   ||   ||   || 1200/(9+pi/2) ||   ||
||   ||   || 2\21 ||   ||   || 114.286 ||=   ||
||   ||   ||   ||   || 5\52 || 115.385 ||=   ||
||   ||   ||   || 3\31 ||   || 116.129 ||=   ||
||   ||   ||   ||   || 4\41 || 117.073 ||=   ||
|| 1\10 ||   ||   ||   ||   || 120 ||=   ||

Original HTML content:

<html><head><title>1L 9s</title></head><body>This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the &quot;Happy&quot; decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.<br />


<table class="wiki_table">
    <tr>
        <th colspan="5">Generator<br />
(octave fraction)<br />
</th>
        <th>Generator<br />
(cents)<br />
</th>
        <th>Comments<br />
</th>
    </tr>
    <tr>
        <td>0\1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>0<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1\14<br />
</td>
        <td>85.714<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1\13<br />
</td>
        <td><br />
</td>
        <td>92.308<br />
</td>
        <td style="text-align: center;">L/s = 4<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2\25<br />
</td>
        <td>96<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(9+pi)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>1\12<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>100<br />
</td>
        <td style="text-align: center;">L/s = 3<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(9+e)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\35<br />
</td>
        <td>102.857<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(10+phi)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2\23<br />
</td>
        <td><br />
</td>
        <td>104.348<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\34<br />
</td>
        <td>105.882<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1\11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>109.091<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(9+sqrt(3))<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4\43<br />
</td>
        <td>111.628<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\32<br />
</td>
        <td><br />
</td>
        <td>112.5<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(9+phi)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5\53<br />
</td>
        <td>113.2075<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(9+pi/2)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>2\21<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>114.286<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5\52<br />
</td>
        <td>115.385<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\31<br />
</td>
        <td><br />
</td>
        <td>116.129<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4\41<br />
</td>
        <td>117.073<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td>1\10<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>120<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
</table>

</body></html>