1L 10s

Revision as of 11:49, 9 November 2015 by Wikispaces>JosephRuhf (**Imported revision 565733327 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2015-11-09 11:49:39 UTC.
The original revision id was 565733327.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

This MOS, generated by any interval up to a diatonic semitone of 1/11edo (109.091 cents), achieves its simplest harmonic entropy minimum where two generators equal 9/8. The temperament which occupies this harmonic entropy minimum is called Ripple, but there are several lower (and more complex) harmonic entropy minima of note including (in descending order of generator height): Passion (6/5=+3 generators), Octacot (3/2=+8 generators), Nautilus (3/2=-6 generators) and Valentine (7/4=-3 generators).
|| 0/1 ||   ||   ||   ||   || 0 ||
||   ||   ||   ||   || 1/15 || 80 ||
||   ||   ||   || 1/14 ||   || 85.714 ||
||   ||   ||   ||   || 2/27 || 88.889 ||
||   ||   ||   ||   ||   || 1200/(10+pi) ||
||   ||   || 1/13 ||   ||   || 92.308 ||
||   ||   ||   ||   ||   || 1200/(10+e) ||
||   ||   ||   ||   || 3/38 || 94.737 ||
||   ||   ||   ||   ||   || 1200/(11+phi) ||
||   ||   ||   || 2/25 ||   || 96 ||
||   ||   ||   ||   || 3/37 || 97.297 ||
||   || 1/12 ||   ||   ||   || 100 ||
||   ||   ||   ||   ||   || 1200/(10+sqrt(3)) ||
||   ||   ||   ||   || 4/47 || 102.128 ||
||   ||   ||   || 3/35 ||   || 102.857 ||
||   ||   ||   ||   ||   || 1200/(10+phi) ||
||   ||   ||   ||   || 5/58 || 103.448 ||
||   ||   ||   ||   ||   || 1200/(10+pi/2) ||
||   ||   || 2/23 ||   ||   || 104.348 ||
||   ||   ||   ||   || 5/57 || 105.263 ||
||   ||   ||   || 3/34 ||   || 105.882 ||
||   ||   ||   ||   || 4/45 || 106.667 ||
|| 1/11 ||   ||   ||   ||   || 109.091 ||

Original HTML content:

<html><head><title>1L 10s</title></head><body>This MOS, generated by any interval up to a diatonic semitone of 1/11edo (109.091 cents), achieves its simplest harmonic entropy minimum where two generators equal 9/8. The temperament which occupies this harmonic entropy minimum is called Ripple, but there are several lower (and more complex) harmonic entropy minima of note including (in descending order of generator height): Passion (6/5=+3 generators), Octacot (3/2=+8 generators), Nautilus (3/2=-6 generators) and Valentine (7/4=-3 generators).<br />


<table class="wiki_table">
    <tr>
        <td>0/1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1/15<br />
</td>
        <td>80<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1/14<br />
</td>
        <td><br />
</td>
        <td>85.714<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2/27<br />
</td>
        <td>88.889<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(10+pi)<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>1/13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>92.308<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(10+e)<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3/38<br />
</td>
        <td>94.737<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(11+phi)<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2/25<br />
</td>
        <td><br />
</td>
        <td>96<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3/37<br />
</td>
        <td>97.297<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1/12<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>100<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(10+sqrt(3))<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4/47<br />
</td>
        <td>102.128<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3/35<br />
</td>
        <td><br />
</td>
        <td>102.857<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(10+phi)<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5/58<br />
</td>
        <td>103.448<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(10+pi/2)<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>2/23<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>104.348<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5/57<br />
</td>
        <td>105.263<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3/34<br />
</td>
        <td><br />
</td>
        <td>105.882<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4/45<br />
</td>
        <td>106.667<br />
</td>
    </tr>
    <tr>
        <td>1/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>109.091<br />
</td>
    </tr>
</table>

</body></html>