17edo neutral scale
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author hstraub and made on 2009-08-21 03:29:30 UTC.
- The original revision id was 85061777.
- The revision comment was: MOS name added
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=17edo neutral scale= A lovely system of Middle-Eastern flavored scales! We can call the [[MOSScales|Moment of Symmetry]] scale derived from a 5/17 generator & an octave repeat the **17edo Neutral Scale**. We build it by stacking neutral thirds; in 17edo that means the interval of five degrees of 17. Begin anywhere. Let's call our first pitch (& its octave transposition) 0: 0 (0) Add a note a neutral third (five degrees) up from 0: 0 5 (0) Add a note a neutral third down from 0 (remember, in 17edo, 0=17): 0 5 12 (0) Between these notes we have intervals of: 5 7 5 Since we have two different step sizes, we have arrived at a three-note MOS scale. But let's continue; three-note scales don't give us much to work with. Add an N3 up from 5: 0 5 10 12 (0) Add an N3 down from 12: 0 5 7 10 12 (0) Add an N3 up from 10: 0 5 7 10 12 15 (0) Add an N3 down from 7: 0 2 5 7 10 12 15 (0) We have arrived again at a MOS scale, of type 3L+4s ("mosh" according to the [[MOSNamingScheme]]). ==7-note neutral scale:== degrees from 0: 0 2 5 7 10 12 15 (0) cents from 0: 0 141 353 494 706 847 1059 (1200) interval classes from P1: P1 N2 N3 P4 P5 N6 N7 (P8) degrees between: 2 3 2 3 2 3 2 cents between: 141 212 141 212 141 212 141 interval classes between: N2 M2 N2 M2 N2 M2 N2 ===modes of 7-note neutral scale=== Naturally, with seven notes we have seven modes, depending on which note we make the starting pitch (tonic) of the scale. I have given these modes a one-syllable name for my own use. Feel free to name (or not name) these modes as you see fit: ==== ==== || mode 1 : bish || from bottom || in between || || degrees || 0 2 5 7 10 12 15 (0) || 2 3 2 3 2 3 2 || || cents || 0 141 353 494 706 847 1059 (1200) || 141 212 141 212 141 212 141 || || interval classes || P1 N2 N3 P4 P5 N6 N7 (P8) || N2 M2 N2 M2 N2 M2 N2 || || solfege || do ru mu fa sol lu tu (do) || ru re ru re ru re ru || || mode 2 : dril || from bottom || in between || || degrees || 0 3 5 8 10 13 15 (0) || 3 2 3 2 3 2 2 || || cents || 0 212 353 565 706 918 1059 (1200) || 212 141 212 141 212 141 141 || || interval classes || P1 M2 N3 A4 P5 M6 N7 (P8) || M2 N2 M2 N2 M2 N2 N2 || || solfege || do re mu fu sol la tu (do) || re ru re ru re ru ru || || mode 3 : fish || from bottom || in between || || degrees || 0 2 5 7 10 12 14 (0) || 2 3 2 3 2 2 3 || || cents || 0 141 353 494 706 847 988 (1200) || 141 212 141 212 141 141 212 || || interval classes || P1 N2 N3 P4 P5 N6 m7 (P8) || N2 M2 N2 M2 N2 N2 M2 || || solfege || do ru mu fa sol lu te (do) || ru re ru re ru ru re || || mode 4 : gil || from bottom || in between || || degrees || 0 3 5 8 10 12 15 (0) || 3 2 3 2 2 3 2 || || cents || 0 212 353 565 706 847 1059 (1200) || 212 131 212 141 141 212 141 || || interval classes || P1 M2 N3 A4 P5 N6 N7 (P8) || M2 N2 M2 N2 N2 M2 N2 || || solfege || do re mu fu sol lu tu (do) || re ru re ru ru re ru || || mode 5 : jwl || from bottom || in between || || degrees || 0 2 5 7 9 12 14 (0) || 2 3 2 2 3 2 3 || || cents || 0 141 353 494 635 847 988 (1200) || 141 212 141 141 212 141 212 || || interval classes || P1 N2 N3 P4 d5 N6 m7 (P8) || N2 M2 N2 N2 M2 N2 M2 || || solfege || do ru mu fa su lu te (do) || ru re ru ru re ru re || || mode 6 : kleeth || from bottom || in between || || degrees || 0 3 5 7 10 12 15 (0) || 3 2 2 3 2 3 2 || || cents || 0 212 353 494 706 847 1059 (1200) || 212 141 141 212 141 212 141 || || interval classes || P1 M2 N3 P4 P5 N6 N7 (P8) || M2 N2 N2 M2 N2 M2 N2 || || solfege || do re mu fa sol lu tu (do) || re ru ru re ru re ru || || mode 7 : led || from bottom || in between || || degrees || 0 2 4 7 9 12 14 (0) || 2 2 3 2 3 2 3 || || cents || 0 141 282 494 635 847 988 (1200) || 141 141 212 141 212 141 212 || || interval classes || P1 N2 m3 P4 d5 N6 m7 (P8) || N2 N2 M2 N2 M2 N2 M2 || || solfege || do ru me fa su lu te (do) || ru ru re ru re ru re || As you can see, these modes contain many neutral 2nds & 3rds, making it sound very different from the traditional major-minor Western harmonic & melodic system, while having a coherent structure including ample 4ths & 5ths that help ground the scale. The 17edo neutral sixths, at 847 cents, come very close to the 13th harmonic - JI interval 13/8 - 841 cents. Thus, their inversions, the 17edo neutral thirds come very close to 16/13. The 17edo neutral 2nds, at 141 cents, fall between 13/12 (139 cents) & 12/11 (151) cents. I've found that they generally function as 13/12, since they fall 3/2 away from 13/8. But you can discover these things for yourself, if you like, & feel free to think of them in different ways entirely. Interestingly, the 7-note neutral scale does not allow you to build any minor or major triads whatsoever. You have only one minor 3rd, which occurs with a diminished 5th, but no perfect fifth, allowing you to build a diminished triad, but no minor triad. You have no major thirds at all. In JI-terms, you might say that it contains harmonies based on 2, 3, & 13, while skipping 7 & 11. 17-tonists may find these scales helpful for escaping the familiar. Just because you //can// play diatonic music in 17edo, doesn't mean you have to. These neutral scales give you a more xenharmonic modal system to play with. If you continue stacking neutral thirds, you will soon come to a rather lovely 10-note neutral scale. I (or someone) will come back to that sooner or later. (Note that you will come up with similarly structured scales by using //other neutral thirds// as generators, although some of them will sound quite different. Some equal divisions of the octave containing neutral scales: [[10edo]], [[13edo]], [[16edo]], [[19edo]], [[24edo]], [[31edo]]....)
Original HTML content:
<html><head><title>17edo neutral scale</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x17edo neutral scale"></a><!-- ws:end:WikiTextHeadingRule:0 -->17edo neutral scale</h1> <br /> A lovely system of Middle-Eastern flavored scales!<br /> <br /> We can call the <a class="wiki_link" href="/MOSScales">Moment of Symmetry</a> scale derived from a 5/17 generator & an octave repeat the <strong>17edo Neutral Scale</strong>. We build it by stacking neutral thirds; in 17edo that means the interval of five degrees of 17.<br /> <br /> Begin anywhere. Let's call our first pitch (& its octave transposition) 0:<br /> <br /> 0 (0)<br /> <br /> Add a note a neutral third (five degrees) up from 0:<br /> <br /> 0 5 (0)<br /> <br /> Add a note a neutral third down from 0 (remember, in 17edo, 0=17):<br /> <br /> 0 5 12 (0)<br /> <br /> Between these notes we have intervals of:<br /> <br /> 5 7 5<br /> <br /> Since we have two different step sizes, we have arrived at a three-note MOS scale. But let's continue; three-note scales don't give us much to work with.<br /> <br /> Add an N3 up from 5:<br /> <br /> 0 5 10 12 (0)<br /> <br /> Add an N3 down from 12:<br /> <br /> 0 5 7 10 12 (0)<br /> <br /> Add an N3 up from 10:<br /> <br /> 0 5 7 10 12 15 (0)<br /> <br /> Add an N3 down from 7:<br /> <br /> 0 2 5 7 10 12 15 (0)<br /> <br /> We have arrived again at a MOS scale, of type 3L+4s ("mosh" according to the <a class="wiki_link" href="/MOSNamingScheme">MOSNamingScheme</a>).<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x17edo neutral scale-7-note neutral scale:"></a><!-- ws:end:WikiTextHeadingRule:2 -->7-note neutral scale:</h2> <br /> degrees from 0: 0 2 5 7 10 12 15 (0)<br /> cents from 0: 0 141 353 494 706 847 1059 (1200)<br /> interval classes from P1: P1 N2 N3 P4 P5 N6 N7 (P8)<br /> <br /> degrees between: 2 3 2 3 2 3 2<br /> cents between: 141 212 141 212 141 212 141<br /> interval classes between: N2 M2 N2 M2 N2 M2 N2<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h3> --><h3 id="toc2"><a name="x17edo neutral scale-7-note neutral scale:-modes of 7-note neutral scale"></a><!-- ws:end:WikiTextHeadingRule:4 -->modes of 7-note neutral scale</h3> <br /> Naturally, with seven notes we have seven modes, depending on which note we make the starting pitch (tonic) of the scale. I have given these modes a one-syllable name for my own use. Feel free to name (or not name) these modes as you see fit:<br /> <!-- ws:start:WikiTextHeadingRule:6:<h4> --><h4 id="toc3"><!-- ws:end:WikiTextHeadingRule:6 --> </h4> <table class="wiki_table"> <tr> <td>mode 1 : bish<br /> </td> <td>from bottom<br /> </td> <td>in between<br /> </td> </tr> <tr> <td>degrees<br /> </td> <td>0 2 5 7 10 12 15 (0)<br /> </td> <td>2 3 2 3 2 3 2<br /> </td> </tr> <tr> <td>cents<br /> </td> <td>0 141 353 494 706 847 1059 (1200)<br /> </td> <td>141 212 141 212 141 212 141<br /> </td> </tr> <tr> <td>interval classes<br /> </td> <td>P1 N2 N3 P4 P5 N6 N7 (P8)<br /> </td> <td>N2 M2 N2 M2 N2 M2 N2<br /> </td> </tr> <tr> <td>solfege<br /> </td> <td>do ru mu fa sol lu tu (do)<br /> </td> <td>ru re ru re ru re ru<br /> </td> </tr> </table> <br /> <table class="wiki_table"> <tr> <td>mode 2 : dril<br /> </td> <td>from bottom<br /> </td> <td>in between<br /> </td> </tr> <tr> <td>degrees<br /> </td> <td>0 3 5 8 10 13 15 (0)<br /> </td> <td>3 2 3 2 3 2 2<br /> </td> </tr> <tr> <td>cents<br /> </td> <td>0 212 353 565 706 918 1059 (1200)<br /> </td> <td>212 141 212 141 212 141 141<br /> </td> </tr> <tr> <td>interval classes<br /> </td> <td>P1 M2 N3 A4 P5 M6 N7 (P8)<br /> </td> <td>M2 N2 M2 N2 M2 N2 N2<br /> </td> </tr> <tr> <td>solfege<br /> </td> <td>do re mu fu sol la tu (do)<br /> </td> <td>re ru re ru re ru ru<br /> </td> </tr> </table> <br /> <table class="wiki_table"> <tr> <td>mode 3 : fish<br /> </td> <td>from bottom<br /> </td> <td>in between<br /> </td> </tr> <tr> <td>degrees<br /> </td> <td>0 2 5 7 10 12 14 (0)<br /> </td> <td>2 3 2 3 2 2 3<br /> </td> </tr> <tr> <td>cents<br /> </td> <td>0 141 353 494 706 847 988 (1200)<br /> </td> <td>141 212 141 212 141 141 212<br /> </td> </tr> <tr> <td>interval classes<br /> </td> <td>P1 N2 N3 P4 P5 N6 m7 (P8)<br /> </td> <td>N2 M2 N2 M2 N2 N2 M2<br /> </td> </tr> <tr> <td>solfege<br /> </td> <td>do ru mu fa sol lu te (do)<br /> </td> <td>ru re ru re ru ru re<br /> </td> </tr> </table> <br /> <table class="wiki_table"> <tr> <td>mode 4 : gil<br /> </td> <td>from bottom<br /> </td> <td>in between<br /> </td> </tr> <tr> <td>degrees<br /> </td> <td>0 3 5 8 10 12 15 (0)<br /> </td> <td>3 2 3 2 2 3 2<br /> </td> </tr> <tr> <td>cents<br /> </td> <td>0 212 353 565 706 847 1059 (1200)<br /> </td> <td>212 131 212 141 141 212 141<br /> </td> </tr> <tr> <td>interval classes<br /> </td> <td>P1 M2 N3 A4 P5 N6 N7 (P8)<br /> </td> <td>M2 N2 M2 N2 N2 M2 N2<br /> </td> </tr> <tr> <td>solfege<br /> </td> <td>do re mu fu sol lu tu (do)<br /> </td> <td>re ru re ru ru re ru<br /> </td> </tr> </table> <br /> <table class="wiki_table"> <tr> <td>mode 5 : jwl<br /> </td> <td>from bottom<br /> </td> <td>in between<br /> </td> </tr> <tr> <td>degrees<br /> </td> <td>0 2 5 7 9 12 14 (0)<br /> </td> <td>2 3 2 2 3 2 3<br /> </td> </tr> <tr> <td>cents<br /> </td> <td>0 141 353 494 635 847 988 (1200)<br /> </td> <td>141 212 141 141 212 141 212<br /> </td> </tr> <tr> <td>interval classes<br /> </td> <td>P1 N2 N3 P4 d5 N6 m7 (P8)<br /> </td> <td>N2 M2 N2 N2 M2 N2 M2<br /> </td> </tr> <tr> <td>solfege<br /> </td> <td>do ru mu fa su lu te (do)<br /> </td> <td>ru re ru ru re ru re<br /> </td> </tr> </table> <br /> <table class="wiki_table"> <tr> <td>mode 6 : kleeth<br /> </td> <td>from bottom<br /> </td> <td>in between<br /> </td> </tr> <tr> <td>degrees<br /> </td> <td>0 3 5 7 10 12 15 (0)<br /> </td> <td>3 2 2 3 2 3 2<br /> </td> </tr> <tr> <td>cents<br /> </td> <td>0 212 353 494 706 847 1059 (1200)<br /> </td> <td>212 141 141 212 141 212 141<br /> </td> </tr> <tr> <td>interval classes<br /> </td> <td>P1 M2 N3 P4 P5 N6 N7 (P8)<br /> </td> <td>M2 N2 N2 M2 N2 M2 N2<br /> </td> </tr> <tr> <td>solfege<br /> </td> <td>do re mu fa sol lu tu (do)<br /> </td> <td>re ru ru re ru re ru<br /> </td> </tr> </table> <br /> <table class="wiki_table"> <tr> <td>mode 7 : led<br /> </td> <td>from bottom<br /> </td> <td>in between<br /> </td> </tr> <tr> <td>degrees<br /> </td> <td>0 2 4 7 9 12 14 (0)<br /> </td> <td>2 2 3 2 3 2 3<br /> </td> </tr> <tr> <td>cents<br /> </td> <td>0 141 282 494 635 847 988 (1200)<br /> </td> <td>141 141 212 141 212 141 212<br /> </td> </tr> <tr> <td>interval classes<br /> </td> <td>P1 N2 m3 P4 d5 N6 m7 (P8)<br /> </td> <td>N2 N2 M2 N2 M2 N2 M2<br /> </td> </tr> <tr> <td>solfege<br /> </td> <td>do ru me fa su lu te (do)<br /> </td> <td>ru ru re ru re ru re<br /> </td> </tr> </table> <br /> As you can see, these modes contain many neutral 2nds & 3rds, making it sound very different from the traditional major-minor Western harmonic & melodic system, while having a coherent structure including ample 4ths & 5ths that help ground the scale. The 17edo neutral sixths, at 847 cents, come very close to the 13th harmonic - JI interval 13/8 - 841 cents. Thus, their inversions, the 17edo neutral thirds come very close to 16/13.<br /> <br /> The 17edo neutral 2nds, at 141 cents, fall between 13/12 (139 cents) & 12/11 (151) cents. I've found that they generally function as 13/12, since they fall 3/2 away from 13/8. But you can discover these things for yourself, if you like, & feel free to think of them in different ways entirely.<br /> <br /> Interestingly, the 7-note neutral scale does not allow you to build any minor or major triads whatsoever. You have only one minor 3rd, which occurs with a diminished 5th, but no perfect fifth, allowing you to build a diminished triad, but no minor triad. You have no major thirds at all. In JI-terms, you might say that it contains harmonies based on 2, 3, & 13, while skipping 7 & 11.<br /> <br /> 17-tonists may find these scales helpful for escaping the familiar. Just because you <em>can</em> play diatonic music in 17edo, doesn't mean you have to. These neutral scales give you a more xenharmonic modal system to play with.<br /> <br /> If you continue stacking neutral thirds, you will soon come to a rather lovely 10-note neutral scale. I (or someone) will come back to that sooner or later.<br /> <br /> <br /> (Note that you will come up with similarly structured scales by using <em>other neutral thirds</em> as generators, although some of them will sound quite different. Some equal divisions of the octave containing neutral scales: <a class="wiki_link" href="/10edo">10edo</a>, <a class="wiki_link" href="/13edo">13edo</a>, <a class="wiki_link" href="/16edo">16edo</a>, <a class="wiki_link" href="/19edo">19edo</a>, <a class="wiki_link" href="/24edo">24edo</a>, <a class="wiki_link" href="/31edo">31edo</a>....)</body></html>