145edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-01-13 22:36:14 UTC.
- The original revision id was 292155313.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
The //145 equal division// divides the octave into 145 equal parts of 8.276 cents each. It is the [[optimal patent val]] for 11-limit [[Hemifamity temperaments|mystery temperament]] and 11-limit rank three temperament [[Hemifamity family|pele temperament]]. It tempers out 1600000/1594323 in the 5-limit; 4375/4374 and 5120/5103 in the 7-limit; 441/440 and 896/891 in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit; 595/594 in the 17-limit; 343/342 and 476/475 in the 19-limit. It also supports and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows [[werckismic chords]], because it tempers out 196/195 it allows [[mynucumic chords]], because it tempers out 352/351 it allows [[minthmic chords]], because it tempers out 364/363 it allows [[gentle chords]], and because it tempers out 847/845 it allows the [[cuthbert triad]], making it a very flexible harmonic system. The same is true of [[232edo]], the optimal patent val for 13-limit mystery. =Music= [[http://micro.soonlabel.com/magic/daily20120113-piano-magic16-.mp3|Chromatic piece in magic 16]] [[@http://www.chrisvaisvil.com/|Chris Vaisvil]]
Original HTML content:
<html><head><title>145edo</title></head><body>The <em>145 equal division</em> divides the octave into 145 equal parts of 8.276 cents each. It is the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 11-limit <a class="wiki_link" href="/Hemifamity%20temperaments">mystery temperament</a> and 11-limit rank three temperament <a class="wiki_link" href="/Hemifamity%20family">pele temperament</a>. It tempers out 1600000/1594323 in the 5-limit; 4375/4374 and 5120/5103 in the 7-limit; 441/440 and 896/891 in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit; 595/594 in the 17-limit; 343/342 and 476/475 in the 19-limit. It also supports and provides a good tuning for 13-limit mystery, and because it tempers out 441/440 it allows <a class="wiki_link" href="/werckismic%20chords">werckismic chords</a>, because it tempers out 196/195 it allows <a class="wiki_link" href="/mynucumic%20chords">mynucumic chords</a>, because it tempers out 352/351 it allows <a class="wiki_link" href="/minthmic%20chords">minthmic chords</a>, because it tempers out 364/363 it allows <a class="wiki_link" href="/gentle%20chords">gentle chords</a>, and because it tempers out 847/845 it allows the <a class="wiki_link" href="/cuthbert%20triad">cuthbert triad</a>, making it a very flexible harmonic system. The same is true of <a class="wiki_link" href="/232edo">232edo</a>, the optimal patent val for 13-limit mystery. <br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:0 -->Music</h1> <a class="wiki_link_ext" href="http://micro.soonlabel.com/magic/daily20120113-piano-magic16-.mp3" rel="nofollow">Chromatic piece in magic 16</a> <a class="wiki_link_ext" href="http://www.chrisvaisvil.com/" rel="nofollow" target="_blank">Chris Vaisvil</a></body></html>