Würschmidt family

Revision as of 16:34, 6 October 2011 by Wikispaces>guest (**Imported revision 262338164 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author guest and made on 2011-10-06 16:34:48 UTC.
The original revision id was 262338164.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]
=Wuerschmidt= 
The [[5-limit]]parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma, and named after José Würschmidt, Its [[monzo]] is |17 1 -8>, and flipping that yields <<8 1 17|| for the wedgie. This tells us the [[generator]] is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[minimax tuning]]. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note [[MOS]] all possibilities.

[[POTE tuning|POTE generator]]: 387.799

Map: [<1 7 3|, <0 -8 -1|]

EDOs: [[31edo|31]], [[34edo|34]], [[65edo|65]], [[164edo|164]]

==Seven limit children== 
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1>, worschmidt adds 65625/65536 = |-16 1 5 1>, whirrschmidt adds 4375/4374 = |-1 -7 4 1> and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2>.

=Wurschmidt= 
Wurschmidt, aside from the commas listed above, also tempers out 225/224. [[31edo]] or [[127edo]] can be used as tunings. Wurschmidt has <<8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version <<8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. [[127edo]] is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.

Commas: 225/224, 8748/8575

[[POTE tuning|POTE generator]]: 387.383

Map: [<1 7 3 15|, <0 -8 -1 -18|]

EDOs: [[31edo|31]], [[127edo|127]]

=Worschmidt= 
Worschmidt tempers out 126/125 rather than 225/224, and can use [[31edo]], [[34edo]], or [[127edo]] as a tuning. If 127 is used, note that the val is <127 201 295 356| and not <127 201 295 357| as with wurschmidt. The wedgie now is <<8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.

Commas: 126/125, 33075/32768

[[POTE tuning|POTE generator]]: 387.392

Map: [<1 7 3 -6|, <0 -8 -1 13|]

EDOs: [[31edo|31]], [[127edo|127]]

=Whirrschmidt= 
[[99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with <<8 1 52 -17 60 118|| for a wedgie.

Commas: 4375/4374, 393216/390625

[[POTE tuning|POTE generator]]: 387.881

Map: [<1 7 3 38|, <0 -8 -1 -52|]

EDOs: [[31edo|31]], [[34edo|34]], [[99edo|99]]

=Hemiwuerschmidt= 
Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. [[68edo]], [[99edo]] and [[130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, <<16 2 5 40 -39 -49 -48 28...

Commas: 2401/2400, 3136/3125

[[POTE tuning|POTE generator]]: ~28/25 = 193.898

Map: [<1 15 4 7|, <0 -16 -2 -5|]
<<16 2 5 -34 -37 6||
EDOs: [[6edo|6]], [[31edo|31]], [[68edo|68]], [[99edo|99]], [[229edo|229]], [[328edo|328]]
Badness: 0.0203

=Doppelwuerschmidt= 
Doppelwuerschmidt uses a generator an approximate 25th harmonic for the genarator. To arrive exactly at 6/1, cents (775.489)^4 is best, and yields a spanking 14-note sLsssLssssLssss scale. In addition to 25/16 and 6/1, it also arrives approximates many other consonanzen, like 7/4, 7/6, 11/9, etc. and especially 11/8.

Commas: 390625/279963 etc.

[[POTE tuning|POTE generator]]: ~25/16 = 775 c

Map:
EDOs: (if it works for wuerschmidt it works for doppelwuerschmidt)
Badness:

==11-limit== 
Commas: 243/242, 441/440, 3136/3125

[[POTE tuning|POTE generator]]: ~28/25 = 193.840

Map: [<1 15 4 7 37|, <0 -16 -2 -5 -40|]
EDOs: 31, 130
Badness: 0.0211
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately </span>

Original HTML content:

<html><head><title>Würschmidt family</title></head><body><!-- ws:start:WikiTextTocRule:16:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --><a href="#Wuerschmidt">Wuerschmidt</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#Wurschmidt">Wurschmidt</a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#Worschmidt">Worschmidt</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --> | <a href="#Whirrschmidt">Whirrschmidt</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --> | <a href="#Hemiwuerschmidt">Hemiwuerschmidt</a><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> | <a href="#Doppelwuerschmidt">Doppelwuerschmidt</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: -->
<!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Wuerschmidt"></a><!-- ws:end:WikiTextHeadingRule:0 -->Wuerschmidt</h1>
 The <a class="wiki_link" href="/5-limit">5-limit</a>parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma, and named after José Würschmidt, Its <a class="wiki_link" href="/monzo">monzo</a> is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 17|| for the wedgie. This tells us the <a class="wiki_link" href="/generator">generator</a> is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the <a class="wiki_link" href="/minimax%20tuning">minimax tuning</a>. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note <a class="wiki_link" href="/MOS">MOS</a> all possibilities.<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.799<br />
<br />
Map: [&lt;1 7 3|, &lt;0 -8 -1|]<br />
<br />
EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/34edo">34</a>, <a class="wiki_link" href="/65edo">65</a>, <a class="wiki_link" href="/164edo">164</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Wuerschmidt-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:2 -->Seven limit children</h2>
 The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&gt;, worschmidt adds 65625/65536 = |-16 1 5 1&gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&gt;.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Wurschmidt"></a><!-- ws:end:WikiTextHeadingRule:4 -->Wurschmidt</h1>
 Wurschmidt, aside from the commas listed above, also tempers out 225/224. <a class="wiki_link" href="/31edo">31edo</a> or <a class="wiki_link" href="/127edo">127edo</a> can be used as tunings. Wurschmidt has &lt;&lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &lt;&lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. <a class="wiki_link" href="/127edo">127edo</a> is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.<br />
<br />
Commas: 225/224, 8748/8575<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.383<br />
<br />
Map: [&lt;1 7 3 15|, &lt;0 -8 -1 -18|]<br />
<br />
EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/127edo">127</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Worschmidt"></a><!-- ws:end:WikiTextHeadingRule:6 -->Worschmidt</h1>
 Worschmidt tempers out 126/125 rather than 225/224, and can use <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/34edo">34edo</a>, or <a class="wiki_link" href="/127edo">127edo</a> as a tuning. If 127 is used, note that the val is &lt;127 201 295 356| and not &lt;127 201 295 357| as with wurschmidt. The wedgie now is &lt;&lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.<br />
<br />
Commas: 126/125, 33075/32768<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.392<br />
<br />
Map: [&lt;1 7 3 -6|, &lt;0 -8 -1 13|]<br />
<br />
EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/127edo">127</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Whirrschmidt"></a><!-- ws:end:WikiTextHeadingRule:8 -->Whirrschmidt</h1>
 <a class="wiki_link" href="/99edo">99edo</a> is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &lt;&lt;8 1 52 -17 60 118|| for a wedgie.<br />
<br />
Commas: 4375/4374, 393216/390625<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.881<br />
<br />
Map: [&lt;1 7 3 38|, &lt;0 -8 -1 -52|]<br />
<br />
EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/34edo">34</a>, <a class="wiki_link" href="/99edo">99</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Hemiwuerschmidt"></a><!-- ws:end:WikiTextHeadingRule:10 -->Hemiwuerschmidt</h1>
 Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. <a class="wiki_link" href="/68edo">68edo</a>, <a class="wiki_link" href="/99edo">99edo</a> and <a class="wiki_link" href="/130edo">130edo</a> can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, &lt;&lt;16 2 5 40 -39 -49 -48 28...<br />
<br />
Commas: 2401/2400, 3136/3125<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~28/25 = 193.898<br />
<br />
Map: [&lt;1 15 4 7|, &lt;0 -16 -2 -5|]<br />
&lt;&lt;16 2 5 -34 -37 6||<br />
EDOs: <a class="wiki_link" href="/6edo">6</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/68edo">68</a>, <a class="wiki_link" href="/99edo">99</a>, <a class="wiki_link" href="/229edo">229</a>, <a class="wiki_link" href="/328edo">328</a><br />
Badness: 0.0203<br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Doppelwuerschmidt"></a><!-- ws:end:WikiTextHeadingRule:12 -->Doppelwuerschmidt</h1>
 Doppelwuerschmidt uses a generator an approximate 25th harmonic for the genarator. To arrive exactly at 6/1, cents (775.489)^4 is best, and yields a spanking 14-note sLsssLssssLssss scale. In addition to 25/16 and 6/1, it also arrives approximates many other consonanzen, like 7/4, 7/6, 11/9, etc. and especially 11/8.<br />
<br />
Commas: 390625/279963 etc.<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~25/16 = 775 c<br />
<br />
Map:<br />
EDOs: (if it works for wuerschmidt it works for doppelwuerschmidt)<br />
Badness:<br />
<br />
<!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="Doppelwuerschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:14 -->11-limit</h2>
 Commas: 243/242, 441/440, 3136/3125<br />
<br />
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~28/25 = 193.840<br />
<br />
Map: [&lt;1 15 4 7 37|, &lt;0 -16 -2 -5 -40|]<br />
EDOs: 31, 130<br />
Badness: 0.0211<br />
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately </span></body></html>