Overtone scale
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Andrew_Heathwaite and made on 2011-10-16 11:22:04 UTC.
- The original revision id was 265202148.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
This page was originally developed by [[Andrew Heathwaite]], but others are welcome to add to it. For another take on the subject, see **[[Mike Sheiman's Very Easy Scale Building From The Harmonic Series Page]]**. == == ==Introduction - Modes of the Harmonic Series== One way of using the [[OverToneSeries|overtone series]] to generate scalar material is to take an octave-long subset of the series and make it octave-repeating. So for instance, starting at the fifth overtone and continuing up the sequence to the tenth overtone (which is a doubling of five, and thus an octave higher) produces a pentatonic scale: || overtone || 5 || 6 || 7 || 8 || 9 || 10 || || JI ratio || [[1_1|1/1]] || [[6_5|6/5]] || [[7_5|7/5]] || [[8_5|8/5]] || [[9_5|9/5]] || [[2_1|2/1]] || Another way to write this would be 5:6:7:8:9:10, which shows that the tones form both a scale and a chord; indeed, it is a 9-limit pentad with 5 in the bass. [[Denny Genovese]] would call the above scale "Mode 5 of the Harmonic Series," or "Mode 5" for short. Further examples will be given with a mode number indicated. Any Mode of the Harmonic Series has the characteristic of containing all [[superparticular]] steps ("superparticular" refers to ratios of the form n/(n-1)) that are decreasing in pitch size as one ascends the scale). So for Mode 5 above we have: || steps || 6:5 || [[7_6|7:6]] || [[8_7|8:7]] || [[9_8|9:8]] || [[10_9|10:9]] || || common name || just minor third || septimal subminor third || septimal supermajor second || large major second || small major second || ==Over-n Scales== Another way to describe Mode 5 is that it is an example of an "Over-5 Scale." As 5 is octave-redundant with 10, 20, 40, 80 etc, any scale with one of those (the form is technically 2<span style="vertical-align: super;">n</span>*5, where n is any integer greater than or equal to zero) in the denominator of every tone could be called an Over-5 Scale. So let's consider Mode 10 -- 10:11:12:13:14:15:16:17:18:19:20 -- || overtone || 10 || 11 || 12 || 13 || 14 || 15 || 16 || 17 || 18 || 19 || 20 || || JI ratio || 1/1 || [[11_10|11/10]] || 6/5 || [[13_10|13/10]] || 7/5 || [[3_2|3_2]] || 8/5 || [[17_10|17/10]] || 9/5 || [[19_10|19/10]] || 2/1 || Notice that the 15th harmonic is a 3/2 above 10. Although this may look like it breaks the Over-5 rule, it's just a reduced form of 15/10, which has a 2<span style="vertical-align: super;">n</span>*5 in the denominator. 10 may be too many notes for a particular purpose; we could take a subset of Mode 10 -- for instance 10:11:13:15:17:20, and it would also be an Over-5 scale. Below are some of the simplest Over-n scales as Modes of the Harmonic Series. All of them are ripe for the taking of subsets. ===Over-1 Scales=== Mode 1 -- 1:2 -- only one tone. Mode 2 -- 2:3:4 -- one tone and perfect fifth (plus octaves). Rather limited. Mode 4 -- 4:5:6:7:8 -- this is the classic [[7-limit]] tetrad. It appears as a chord more often than a scale, but it could be used either way. It includes the classic major triad, 4:5:6, with a harmonic seventh. Mode 8 -- 8:9:10:11:12:13:14:15:16 -- an eight-tone scale, or a [[13-limit]] octad. This is a very effective scale, with complexity ranging from the simple major triad above (or a 2:3:4 open fifth chord) to chords involving 13 and 11 such as the wild 9:11:13:15 tetrad. [[Dante Rosati]] calls it the "Diatonic Harmonic Series Scale" and has refretted a guitar to play it. See: [[First Five Octaves of the Harmonic Series]] and [[otones8-16]]. Mode 16 -- 16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32 -- Dante calls this the "Chromatic Harmonic Series Scale." It includes a [[19-limit]] minor chord, 16:19:24, in addition the the classic major. Incorporating overtones through the 31st, a great variety of complexity is possible. As 16 is a lot of tones to use at once, this is a good scale for making modal subsets of. Andrew Heathwaite recommends his heptatonic "remem" scale -- 16:17:18:21:24:26:28:32 -- or his extended nonatonic "remem" scale which adds 19 and 23 -- 16:17:18:19:21:23:24:26:28:32. Over-1 scales have a very strong attraction to their tonic, which is the fundamental of the series. Other Over-n scales may have more complex relationships to their tonics, which are not fundamentals. Indeed, when taking subsets, the fundamental may not even be present. ===Over-3 Scales=== Mode 3 -- 3:4:5:6 -- a major triad in 2nd inversion -- that is, with the perfect fifth in the bass. Mode 6 -- 6:7:8:9:10:11:12 -- an effective 6-tone scale. 9 is 3/2 above 3, so there is a perfect fifth above the bass. A septimal subminor triad -- 6:7:9 -- is available, as well as an undecimal 6:7:9:11 tetrad. Mode 12 -- 12:13:14:15:16:17:18:19:20:21:22:23:24 -- as this scale has 12 tones, it fits nicely onto a traditional keyboard instrument, such as piano, melodica, organ, accordion, etc. It allows a 4:5:6:7 septimal tetrad above the bass (a reduced form of 12:15:18:21) as well as the subminor triad and undecimal tetrad given above. The fundamental is 4/3 above the bass, making 4/3 a strong attractor in the system. Andrew Heathwaite has composed with a 12:13:14:16:18:20:22:24 subset, and [[Jacob Barton]] retuned an electric organ to this scale. Mode 24 -- 24:25:26:27:28:29:30:31:32:33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48 -- a great variety available here, with 47 as the highest prime. Added to the classic major and septimal subminor triads, we have a 29-limit supraminor triad -- 24:29:36 and 31-limit supermajor triad -- 24:31:36. Andrew Heathwaite has refretted a mountain dulcimer to this scale (and has plans to refret more instruments to match). ===Over-5 Scales=== More to be written on these and the Over-n scales below.... === === ===Over-7 Scales=== ===Over-9 Scales=== ===Over-11 Scales=== ===Over-13 Scales=== ==A Solfege System== [[Andrew Heathwaite]] proposes a solfege system for overtones 16-32 (Mode 16): || overtone || 16 || 17 || 18 || 19 || 20 || 21 || 22 || 23 || 24 || 25 || 26 || 27 || 28 || 29 || 30 || 31 || 32 || || JI ratio || 1/1 || 17/16 || 9/8 || 19/16 || 5/4 || 21/16 || 11/8 || 23/16 || 3/2 || 25/16 || 13/8 || 27/16 || 7/4 || 29/16 || 15/8 || 31/16 || 2/1 || || solfege || **do** || **ra** || **re** || **me** || **mi** || **fe** || **fu** || **su** || **sol** || **le** || **lu** || **la** || **ta** || **tu** || **ti** || **da** || **do** || Thus, the pentatonic scale in the example above could be sung: **mi sol ta do re mi** ==Twelve Scales== For those interested in learning to sing and hear just intervals, here are twelve of the simplest otonal scales to try. I leave it up to the curious learner to decide the value, beauty, or usefulness of these particular scales for their compositional purposes. || || || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 || 13 || 14 || 15 || 16 || 17 || 18 || 19 || 20 || 21 || 22 || 23 || 24 || || Mode 1 || 1-note || **do** || **do** || || || || || || || || || || || || || || || || || || || || || || || || Mode 2 || 2-note || || **do** || **sol** || **do** || || || || || || || || || || || || || || || || || || || || || || Mode 3 || 3-note || || || **sol** || **do** || **mi** || **sol** || || || || || || || || || || || || || || || || || || || || Mode 4 || 4-note || || || || **do** || **mi** || **sol** || **ta** || **do** || || || || || || || || || || || || || || || || || || Mode 5 || 5-note || || || || || **mi** || **sol** || **ta** || **do** || **re** || **mi** || || || || || || || || || || || || || || || || Mode 6 || 6-note || || || || || || **sol** || **ta** || **do** || **re** || **mi** || **fu** || **sol** || || || || || || || || || || || || || || Mode 7 || 7-note || || || || || || || **ta** || **do** || **re** || **mi** || **fu** || **sol** || **lu** || **ta** || || || || || || || || || || || || Mode 8 || 8-note || || || || || || || || **do** || **re** || **mi** || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || || || || || || || || || || Mode 9 || 9-note || || || || || || || || || **re** || **mi** || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || || || || || || || || Mode 10 || 10-note || || || || || || || || || || **mi** || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || **me** || **mi** || || || || || || Mode 11 || 11-note || || || || || || || || || || || **fu** || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || **me** || **mi** || **fe** || **fu** || || || || Mode 12 || 12-note || || || || || || || || || || || || **sol** || **lu** || **ta** || **ti** || **do** || **ra** || **re** || **me** || **mi** || **fe** || **fu** || **su** || **sol** || ==Next Steps== Here are some next steps: * Go beyond the 24th overtone (eg. overtones 16-32 or higher). * Experiment with using different pitches as the "tonic" of the scale (eg. **sol lu ta do re mi fu sol**, which could be taken as the 7-note scale starting on **sol**). * Take subsets of larger scales, which are not strict adjacent overtone scales (eg. **do re fe sol ta do**). * Learn the inversions of these scales, which would be **undertone** scales. (Undertone scales would have smaller steps at the bottom of the scale, which would get larger as one ascends.) * Borrow overtones & undertones from the overtones & undertones of the fundamental -- this process can produce rich fields of interlocking harmonic series, and is often the sort of thing that composers do when they're composing in just intonation. Harry Partch's "Monophonic Fabric," which consists of 43 unequal tones per octave, is one famous example.
Original HTML content:
<html><head><title>overtone scales</title></head><body>This page was originally developed by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a>, but others are welcome to add to it. For another take on the subject, see <strong><a class="wiki_link" href="/Mike%20Sheiman%27s%20Very%20Easy%20Scale%20Building%20From%20The%20Harmonic%20Series%20Page">Mike Sheiman's Very Easy Scale Building From The Harmonic Series Page</a></strong>.<br /> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><!-- ws:end:WikiTextHeadingRule:0 --> </h2> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x-Introduction - Modes of the Harmonic Series"></a><!-- ws:end:WikiTextHeadingRule:2 -->Introduction - Modes of the Harmonic Series</h2> <br /> One way of using the <a class="wiki_link" href="/OverToneSeries">overtone series</a> to generate scalar material is to take an octave-long subset of the series and make it octave-repeating. So for instance, starting at the fifth overtone and continuing up the sequence to the tenth overtone (which is a doubling of five, and thus an octave higher) produces a pentatonic scale:<br /> <br /> <table class="wiki_table"> <tr> <td>overtone<br /> </td> <td>5<br /> </td> <td>6<br /> </td> <td>7<br /> </td> <td>8<br /> </td> <td>9<br /> </td> <td>10<br /> </td> </tr> <tr> <td>JI ratio<br /> </td> <td><a class="wiki_link" href="/1_1">1/1</a><br /> </td> <td><a class="wiki_link" href="/6_5">6/5</a><br /> </td> <td><a class="wiki_link" href="/7_5">7/5</a><br /> </td> <td><a class="wiki_link" href="/8_5">8/5</a><br /> </td> <td><a class="wiki_link" href="/9_5">9/5</a><br /> </td> <td><a class="wiki_link" href="/2_1">2/1</a><br /> </td> </tr> </table> <br /> Another way to write this would be 5:6:7:8:9:10, which shows that the tones form both a scale and a chord; indeed, it is a 9-limit pentad with 5 in the bass. <a class="wiki_link" href="/Denny%20Genovese">Denny Genovese</a> would call the above scale "Mode 5 of the Harmonic Series," or "Mode 5" for short. Further examples will be given with a mode number indicated.<br /> <br /> Any Mode of the Harmonic Series has the characteristic of containing all <a class="wiki_link" href="/superparticular">superparticular</a> steps ("superparticular" refers to ratios of the form n/(n-1)) that are decreasing in pitch size as one ascends the scale). So for Mode 5 above we have:<br /> <br /> <table class="wiki_table"> <tr> <td>steps<br /> </td> <td>6:5<br /> </td> <td><a class="wiki_link" href="/7_6">7:6</a><br /> </td> <td><a class="wiki_link" href="/8_7">8:7</a><br /> </td> <td><a class="wiki_link" href="/9_8">9:8</a><br /> </td> <td><a class="wiki_link" href="/10_9">10:9</a><br /> </td> </tr> <tr> <td>common name<br /> </td> <td>just minor third<br /> </td> <td>septimal subminor third<br /> </td> <td>septimal supermajor second<br /> </td> <td>large major second<br /> </td> <td>small major second<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="x-Over-n Scales"></a><!-- ws:end:WikiTextHeadingRule:4 -->Over-n Scales</h2> <br /> Another way to describe Mode 5 is that it is an example of an "Over-5 Scale." As 5 is octave-redundant with 10, 20, 40, 80 etc, any scale with one of those (the form is technically 2<span style="vertical-align: super;">n</span>*5, where n is any integer greater than or equal to zero) in the denominator of every tone could be called an Over-5 Scale. So let's consider Mode 10 -- 10:11:12:13:14:15:16:17:18:19:20 --<br /> <br /> <table class="wiki_table"> <tr> <td>overtone<br /> </td> <td>10<br /> </td> <td>11<br /> </td> <td>12<br /> </td> <td>13<br /> </td> <td>14<br /> </td> <td>15<br /> </td> <td>16<br /> </td> <td>17<br /> </td> <td>18<br /> </td> <td>19<br /> </td> <td>20<br /> </td> </tr> <tr> <td>JI ratio<br /> </td> <td>1/1<br /> </td> <td><a class="wiki_link" href="/11_10">11/10</a><br /> </td> <td>6/5<br /> </td> <td><a class="wiki_link" href="/13_10">13/10</a><br /> </td> <td>7/5<br /> </td> <td><a class="wiki_link" href="/3_2">3_2</a><br /> </td> <td>8/5<br /> </td> <td><a class="wiki_link" href="/17_10">17/10</a><br /> </td> <td>9/5<br /> </td> <td><a class="wiki_link" href="/19_10">19/10</a><br /> </td> <td>2/1<br /> </td> </tr> </table> <br /> Notice that the 15th harmonic is a 3/2 above 10. Although this may look like it breaks the Over-5 rule, it's just a reduced form of 15/10, which has a 2<span style="vertical-align: super;">n</span>*5 in the denominator. 10 may be too many notes for a particular purpose; we could take a subset of Mode 10 -- for instance 10:11:13:15:17:20, and it would also be an Over-5 scale. Below are some of the simplest Over-n scales as Modes of the Harmonic Series. All of them are ripe for the taking of subsets.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h3> --><h3 id="toc3"><a name="x-Over-n Scales-Over-1 Scales"></a><!-- ws:end:WikiTextHeadingRule:6 -->Over-1 Scales</h3> <br /> Mode 1 -- 1:2 -- only one tone.<br /> <br /> Mode 2 -- 2:3:4 -- one tone and perfect fifth (plus octaves). Rather limited.<br /> <br /> Mode 4 -- 4:5:6:7:8 -- this is the classic <a class="wiki_link" href="/7-limit">7-limit</a> tetrad. It appears as a chord more often than a scale, but it could be used either way. It includes the classic major triad, 4:5:6, with a harmonic seventh.<br /> <br /> Mode 8 -- 8:9:10:11:12:13:14:15:16 -- an eight-tone scale, or a <a class="wiki_link" href="/13-limit">13-limit</a> octad. This is a very effective scale, with complexity ranging from the simple major triad above (or a 2:3:4 open fifth chord) to chords involving 13 and 11 such as the wild 9:11:13:15 tetrad. <a class="wiki_link" href="/Dante%20Rosati">Dante Rosati</a> calls it the "Diatonic Harmonic Series Scale" and has refretted a guitar to play it. See: <a class="wiki_link" href="/First%20Five%20Octaves%20of%20the%20Harmonic%20Series">First Five Octaves of the Harmonic Series</a> and <a class="wiki_link" href="/otones8-16">otones8-16</a>.<br /> <br /> Mode 16 -- 16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32 -- Dante calls this the "Chromatic Harmonic Series Scale." It includes a <a class="wiki_link" href="/19-limit">19-limit</a> minor chord, 16:19:24, in addition the the classic major. Incorporating overtones through the 31st, a great variety of complexity is possible. As 16 is a lot of tones to use at once, this is a good scale for making modal subsets of. Andrew Heathwaite recommends his heptatonic "remem" scale -- 16:17:18:21:24:26:28:32 -- or his extended nonatonic "remem" scale which adds 19 and 23 -- 16:17:18:19:21:23:24:26:28:32.<br /> <br /> Over-1 scales have a very strong attraction to their tonic, which is the fundamental of the series. Other Over-n scales may have more complex relationships to their tonics, which are not fundamentals. Indeed, when taking subsets, the fundamental may not even be present.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h3> --><h3 id="toc4"><a name="x-Over-n Scales-Over-3 Scales"></a><!-- ws:end:WikiTextHeadingRule:8 -->Over-3 Scales</h3> <br /> Mode 3 -- 3:4:5:6 -- a major triad in 2nd inversion -- that is, with the perfect fifth in the bass.<br /> <br /> Mode 6 -- 6:7:8:9:10:11:12 -- an effective 6-tone scale. 9 is 3/2 above 3, so there is a perfect fifth above the bass. A septimal subminor triad -- 6:7:9 -- is available, as well as an undecimal 6:7:9:11 tetrad.<br /> <br /> Mode 12 -- 12:13:14:15:16:17:18:19:20:21:22:23:24 -- as this scale has 12 tones, it fits nicely onto a traditional keyboard instrument, such as piano, melodica, organ, accordion, etc. It allows a 4:5:6:7 septimal tetrad above the bass (a reduced form of 12:15:18:21) as well as the subminor triad and undecimal tetrad given above. The fundamental is 4/3 above the bass, making 4/3 a strong attractor in the system. Andrew Heathwaite has composed with a 12:13:14:16:18:20:22:24 subset, and <a class="wiki_link" href="/Jacob%20Barton">Jacob Barton</a> retuned an electric organ to this scale.<br /> <br /> Mode 24 -- 24:25:26:27:28:29:30:31:32:33:34:35:36:37:38:39:40:41:42:43:44:45:46:47:48 -- a great variety available here, with 47 as the highest prime. Added to the classic major and septimal subminor triads, we have a 29-limit supraminor triad -- 24:29:36 and 31-limit supermajor triad -- 24:31:36. Andrew Heathwaite has refretted a mountain dulcimer to this scale (and has plans to refret more instruments to match).<br /> <br /> <!-- ws:start:WikiTextHeadingRule:10:<h3> --><h3 id="toc5"><a name="x-Over-n Scales-Over-5 Scales"></a><!-- ws:end:WikiTextHeadingRule:10 -->Over-5 Scales</h3> <br /> More to be written on these and the Over-n scales below....<br /> <!-- ws:start:WikiTextHeadingRule:12:<h3> --><h3 id="toc6"><!-- ws:end:WikiTextHeadingRule:12 --> </h3> <!-- ws:start:WikiTextHeadingRule:14:<h3> --><h3 id="toc7"><a name="x-Over-n Scales-Over-7 Scales"></a><!-- ws:end:WikiTextHeadingRule:14 -->Over-7 Scales</h3> <!-- ws:start:WikiTextHeadingRule:16:<h3> --><h3 id="toc8"><a name="x-Over-n Scales-Over-9 Scales"></a><!-- ws:end:WikiTextHeadingRule:16 -->Over-9 Scales</h3> <!-- ws:start:WikiTextHeadingRule:18:<h3> --><h3 id="toc9"><a name="x-Over-n Scales-Over-11 Scales"></a><!-- ws:end:WikiTextHeadingRule:18 -->Over-11 Scales</h3> <!-- ws:start:WikiTextHeadingRule:20:<h3> --><h3 id="toc10"><a name="x-Over-n Scales-Over-13 Scales"></a><!-- ws:end:WikiTextHeadingRule:20 -->Over-13 Scales</h3> <br /> <!-- ws:start:WikiTextHeadingRule:22:<h2> --><h2 id="toc11"><a name="x-A Solfege System"></a><!-- ws:end:WikiTextHeadingRule:22 -->A Solfege System</h2> <br /> <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a> proposes a solfege system for overtones 16-32 (Mode 16):<br /> <br /> <table class="wiki_table"> <tr> <td>overtone<br /> </td> <td>16<br /> </td> <td>17<br /> </td> <td>18<br /> </td> <td>19<br /> </td> <td>20<br /> </td> <td>21<br /> </td> <td>22<br /> </td> <td>23<br /> </td> <td>24<br /> </td> <td>25<br /> </td> <td>26<br /> </td> <td>27<br /> </td> <td>28<br /> </td> <td>29<br /> </td> <td>30<br /> </td> <td>31<br /> </td> <td>32<br /> </td> </tr> <tr> <td>JI ratio<br /> </td> <td>1/1<br /> </td> <td>17/16<br /> </td> <td>9/8<br /> </td> <td>19/16<br /> </td> <td>5/4<br /> </td> <td>21/16<br /> </td> <td>11/8<br /> </td> <td>23/16<br /> </td> <td>3/2<br /> </td> <td>25/16<br /> </td> <td>13/8<br /> </td> <td>27/16<br /> </td> <td>7/4<br /> </td> <td>29/16<br /> </td> <td>15/8<br /> </td> <td>31/16<br /> </td> <td>2/1<br /> </td> </tr> <tr> <td>solfege<br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>me</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fe</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>su</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>le</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>la</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>tu</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>da</strong><br /> </td> <td><strong>do</strong><br /> </td> </tr> </table> <br /> Thus, the pentatonic scale in the example above could be sung: <strong>mi sol ta do re mi</strong><br /> <br /> <!-- ws:start:WikiTextHeadingRule:24:<h2> --><h2 id="toc12"><a name="x-Twelve Scales"></a><!-- ws:end:WikiTextHeadingRule:24 -->Twelve Scales</h2> <br /> For those interested in learning to sing and hear just intervals, here are twelve of the simplest otonal scales to try. I leave it up to the curious learner to decide the value, beauty, or usefulness of these particular scales for their compositional purposes.<br /> <br /> <table class="wiki_table"> <tr> <td><br /> </td> <td><br /> </td> <td>1<br /> </td> <td>2<br /> </td> <td>3<br /> </td> <td>4<br /> </td> <td>5<br /> </td> <td>6<br /> </td> <td>7<br /> </td> <td>8<br /> </td> <td>9<br /> </td> <td>10<br /> </td> <td>11<br /> </td> <td>12<br /> </td> <td>13<br /> </td> <td>14<br /> </td> <td>15<br /> </td> <td>16<br /> </td> <td>17<br /> </td> <td>18<br /> </td> <td>19<br /> </td> <td>20<br /> </td> <td>21<br /> </td> <td>22<br /> </td> <td>23<br /> </td> <td>24<br /> </td> </tr> <tr> <td>Mode 1<br /> </td> <td>1-note<br /> </td> <td><strong>do</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 2<br /> </td> <td>2-note<br /> </td> <td><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 3<br /> </td> <td>3-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 4<br /> </td> <td>4-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 5<br /> </td> <td>5-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 6<br /> </td> <td>6-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 7<br /> </td> <td>7-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 8<br /> </td> <td>8-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 9<br /> </td> <td>9-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 10<br /> </td> <td>10-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>me</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 11<br /> </td> <td>11-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>me</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fe</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>Mode 12<br /> </td> <td>12-note<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>sol</strong><br /> </td> <td><strong>lu</strong><br /> </td> <td><strong>ta</strong><br /> </td> <td><strong>ti</strong><br /> </td> <td><strong>do</strong><br /> </td> <td><strong>ra</strong><br /> </td> <td><strong>re</strong><br /> </td> <td><strong>me</strong><br /> </td> <td><strong>mi</strong><br /> </td> <td><strong>fe</strong><br /> </td> <td><strong>fu</strong><br /> </td> <td><strong>su</strong><br /> </td> <td><strong>sol</strong><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:26:<h2> --><h2 id="toc13"><a name="x-Next Steps"></a><!-- ws:end:WikiTextHeadingRule:26 -->Next Steps</h2> <br /> Here are some next steps:<br /> <ul><li>Go beyond the 24th overtone (eg. overtones 16-32 or higher).</li><li>Experiment with using different pitches as the "tonic" of the scale (eg. <strong>sol lu ta do re mi fu sol</strong>, which could be taken as the 7-note scale starting on <strong>sol</strong>).</li><li>Take subsets of larger scales, which are not strict adjacent overtone scales (eg. <strong>do re fe sol ta do</strong>).</li><li>Learn the inversions of these scales, which would be <strong>undertone</strong> scales. (Undertone scales would have smaller steps at the bottom of the scale, which would get larger as one ascends.)</li><li>Borrow overtones & undertones from the overtones & undertones of the fundamental -- this process can produce rich fields of interlocking harmonic series, and is often the sort of thing that composers do when they're composing in just intonation. Harry Partch's "Monophonic Fabric," which consists of 43 unequal tones per octave, is one famous example.</li></ul></body></html>