Middle Path table of 5-limit rank-2 temperaments
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author keenanpepper and made on 2012-07-27 23:03:40 UTC.
- The original revision id was 355137872.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
This table is an an updated version of Table 1 of [[Paul Erlich]]'s [[A Middle Path]]. The complexity is now measured a different way (which, however, is proportional to the original complexity for this table), and some temperament names have been updated. The "main sequence" of this table comprises all possible five-limit 2-D cases where complexity/7.65 + damage/10 < 1. The 'exotemperaments' have larger damage and lend themselves to special measures such as custom inharmonic timbres in order to aid harmoniousness. The 'bonus temperaments' are more complex but have exceedingly small damage and sound like JI. See also [[Middle Path table of seven-limit rank two temperaments]], [[Middle Path table of eleven-limit rank two temperaments]]. || Vanishing Interval's Ratio || V.I. Vector || V.I. cents || Temperament name || TOP period || TOP generator || Mapp. of 2 || Mapp. of 3 || Mapp. of 5 || Cmplx. || TOP Dmg. || ETs || |||||||||||||||||||||||| TWO EXOTEMPERAMENTS: || || 16/15 || [4, -1, -1> || 111.7 || [[Father]] || 1185.9 || 447.4 || 1, 0 || 2, -1 || 2, 1 || || 14.13 || || || 27/25 || [0, 3, -2> || 133.2 || [[Bug]] || 1200.0 || 260.3 || 1, 0 || 2, -2 || 3, -3 || || 14.18 || || |||||||||||||||||||||||| MAIN SEQUENCE: || || 25/24 || [-3, -1, 2> || 70.7 || [[Dicot]] || 1207.66 || 353.22 || 1, 0 || 1, 2 || 2, 1 || 1.60 || 7.66 || [[24edo|24c]], 41cc, (48cc), 65ccc... || || 81/80 || [-4, 4, -1> || 21.5 || [[Meantone]] || 1201.70 || 504.13 || 1, 0 || 2, -1 || 4, -4 || 2.19 || 1.70 || [[12edo|12]], [[19edo|19]], (24), 26, 29c, 31, 33c, (36)... || || 128/125 || [7, 0, -3> || 41.1 || [[Augmented]] || 399.02 || 93.15 || 3, 0 || 5, -1 || 7, 0 || 2.42 || 2.94 || [[12edo|12]], [[15edo|15]], (24), 27, (30), 33, (36), 39... || || 135/128 || [-7, 3, 1> || 92.2 || [[Mavila]] || 1206.55 || 685.03 || 1, 0 || 2, -1 || 1, 3 || 2.44 || 6.55 || [[37edo|37bc]], 67bbccc, (74bbccc), 81bbcccc... || || 250/243 || [1, -5, 3> || 49.2 || [[Porcupine]] || 1196.91 || 1034.59 || 1, 0 || 2, -3 || 3, -5 || 2.75 || 3.09 || [[15edo|15]], [[22edo|22]], [[29edo|29]], (30), 36c, 37, 43c, (44)... || || 256/243 || [8, -5, 0> || 90.2 || [[Blackwood]] || 238.87 || 158.78 || 5, 0 || 8, 0 || 11, 1 || 2.76 || 5.67 || [[15edo|15]], [[25edo|25]], (30), 35bc, 40b, (45bc)... || || 648/625 || [3, 4, -4> || 62.6 || [[Diminished]] || 299.16 || 197.49 || 4, 0 || 6, 1 || 9, 1 || 3.23 || 3.36 || [[12edo|12]], (24), 28, 32c, (36), 40, 44c, (48c)... || || 2048/2025 || [11, -4, -2> || 19.6 || [[Srutal]] || 599.56 || 494.86 || 2, 0 || 3, 1 || 5, -2 || 3.81 || 0.89 || [[12edo|12]], [[22edo|22]], (24), 34, (36), (44), 46, (48c), 54... || || 3125/3072 || [-10, -1, 5> || 29.6 || [[Magic]] || 1201.28 || 380.80 || 1, 0 || 0, 5 || 2, 1 || 4.02 || 1.28 || [[19edo|19]], [[22edo|22]], (38), 41, (44), 54b, (57), 60... || || 6561/6250 || [-1, 8, -5> || 84.1 || [[Ripple]] || 1203.32 || 101.99 || 1, 0 || 2, -5 || 3, -8 || 4.38 || 3.32 || [[12edo|12]], (24), (36), 47, (48c), 59b, (60c)... || || 15625/15552 || [-6, -5, 6> || 8.11 || [[Hanson]] || 1200.29 || 317.07 || 1, 0 || 0, 6 || 1, 5 || 4.83 || 0.29 || [[19edo|19]], [[34edo|34]], (38), 49, 53, (57), 64b, (68)... || || 16875/16384 || [-14, 3, 4> || 51.1 || [[Negri]] || 1201.82 || 1075.68 || 1, 0 || 2, -4 || 2, 3 || 4.86 || 1.82 || [[19edo|19]], [[29edo|29]], (38), 48, (57), (58c), 66b, 67c... || || 20000/19683 || [5, -9, 4> || 27.7 || [[Tetracot]] || 1199.03 || 176.11 || 1, 0 || 1, 4 || 1, 9 || 4.95 || 0.97 || [[27edo|27]], [[34edo|34]], [[41edo|41]], 48, (54c), 55c, 61, (68), 75... || || 20480/19683 || [12, -9, 1> || 68.7 || [[Superpyth]] || 1197.60 || 708.17 || 1, 0 || 2, -1 || 6, -9 || 4.95 || 2.40 || [[22edo|22]], [[27edo|27]], (44), 49, (54c), (66), 71, 76bc... || || 32805/32768 || [-15, 8, 1> || 1.95 || [[Helmholtz]] || 1200.07 || 701.79 || 1, 0 || 2, -1 || -1, 8 || 5.20 || 0.07 || [[41edo|41]], [[53edo|53]], [[65edo|65]], 70c, 77, (82), 89, 94, 99c... || || 78732/78125 || [2, 9, -7> || 13.4 || [[Sensi]] || 1199.59 || 756.60 || 1, 0 || 6, -7 || 8, -9 || 5.63 || 0.41 || [[19edo|19]], (38), [[46edo|46]], (57), 65, 73, (76), 84... || || 262144/253125 || [18, -4, -5> || 60.6 || [[Passion]] || 1198.31 || 98.40 || 1, 0 || 2, -5 || 2, 4 || 6.23 || 1.69 || [[73edo|73]], 134bc, (146bc), 158bcc... || || 393216/390625 || [17, 1, -8> || 11.4 || [[Würschmidt]] || 1199.69 || 812.05 || 1, 0 || 7, -8 || 3, -1 || 6.44 || 0.31 || [[34edo|34]], 65, (68), 96, 99, (102)... || || 531441/524288 || [-19, 12, 0> || 23.5 || [[Compton]] || 100.05 || 15.13 || 12, 0 || 19, 0 || 28, -1 || 6.59 || 0.62 || [[60edo|60]], [[72edo|72]], 84, 96, 108, (120c), 132... || || 1600000/1594323 || [9, -13, 5> || 6.15 || [[Amity]] || 1199.85 || 860.38 || 1, 0 || -2, 5 || -7, 13 || 7.14 || 0.15 || [[53edo|53]], [[99edo|99]], (106), 145, 152, (159)... || || 2109375/2097152 || [-21, 3, 7> || 10.1 || [[Orson]] || 1200.24 || 271.65 || 1, 0 || 0, 7 || 3, -3 || 7.28 || 0.24 || [[53edo|53]], (106), 137, (159), 190... || |||||||||||||||||||||||| TWO BONUS TEMPS: || || 6115295232/6103515625 || [23, 6, -14> || 3.34 || [[Vishnu]] || 599.97 || 71.15 || 2, 0 || 4, -7 || 5, -3 || || 0.05 || || || 274877906944/274658203125 || [38, -2, -15> || 1.38 || [[Luna]] || 1199.98 || 193.196 || 1, 0 || 4, -15 || 2, 2 || || 0.02 || ||
Original HTML content:
<html><head><title>Middle Path table of five-limit rank two temperaments</title></head><body>This table is an an updated version of Table 1 of <a class="wiki_link" href="/Paul%20Erlich">Paul Erlich</a>'s <a class="wiki_link" href="/A%20Middle%20Path">A Middle Path</a>. The complexity is now measured a different way (which, however, is proportional to the original complexity for this table), and some temperament names have been updated.<br /> <br /> The "main sequence" of this table comprises all possible five-limit 2-D cases where complexity/7.65 + damage/10 < 1. The 'exotemperaments' have larger damage and lend themselves to special measures such as custom inharmonic timbres in order to aid harmoniousness. The 'bonus temperaments' are more complex but have exceedingly small damage and sound like JI.<br /> <br /> See also <a class="wiki_link" href="/Middle%20Path%20table%20of%20seven-limit%20rank%20two%20temperaments">Middle Path table of seven-limit rank two temperaments</a>, <a class="wiki_link" href="/Middle%20Path%20table%20of%20eleven-limit%20rank%20two%20temperaments">Middle Path table of eleven-limit rank two temperaments</a>.<br /> <br /> <table class="wiki_table"> <tr> <td>Vanishing Interval's Ratio<br /> </td> <td>V.I. Vector<br /> </td> <td>V.I. cents<br /> </td> <td>Temperament<br /> name<br /> </td> <td>TOP<br /> period<br /> </td> <td>TOP<br /> generator<br /> </td> <td>Mapp.<br /> of 2<br /> </td> <td>Mapp.<br /> of 3<br /> </td> <td>Mapp.<br /> of 5<br /> </td> <td>Cmplx.<br /> </td> <td>TOP<br /> Dmg.<br /> </td> <td>ETs<br /> </td> </tr> <tr> <td colspan="12">TWO EXOTEMPERAMENTS:<br /> </td> </tr> <tr> <td>16/15<br /> </td> <td>[4, -1, -1><br /> </td> <td>111.7<br /> </td> <td><a class="wiki_link" href="/Father">Father</a><br /> </td> <td>1185.9<br /> </td> <td>447.4<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>2, 1<br /> </td> <td><br /> </td> <td>14.13<br /> </td> <td><br /> </td> </tr> <tr> <td>27/25<br /> </td> <td>[0, 3, -2><br /> </td> <td>133.2<br /> </td> <td><a class="wiki_link" href="/Bug">Bug</a><br /> </td> <td>1200.0<br /> </td> <td>260.3<br /> </td> <td>1, 0<br /> </td> <td>2, -2<br /> </td> <td>3, -3<br /> </td> <td><br /> </td> <td>14.18<br /> </td> <td><br /> </td> </tr> <tr> <td colspan="12">MAIN SEQUENCE:<br /> </td> </tr> <tr> <td>25/24<br /> </td> <td>[-3, -1, 2><br /> </td> <td>70.7<br /> </td> <td><a class="wiki_link" href="/Dicot">Dicot</a><br /> </td> <td>1207.66<br /> </td> <td>353.22<br /> </td> <td>1, 0<br /> </td> <td>1, 2<br /> </td> <td>2, 1<br /> </td> <td>1.60<br /> </td> <td>7.66<br /> </td> <td><a class="wiki_link" href="/24edo">24c</a>, 41cc, (48cc), 65ccc...<br /> </td> </tr> <tr> <td>81/80<br /> </td> <td>[-4, 4, -1><br /> </td> <td>21.5<br /> </td> <td><a class="wiki_link" href="/Meantone">Meantone</a><br /> </td> <td>1201.70<br /> </td> <td>504.13<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>4, -4<br /> </td> <td>2.19<br /> </td> <td>1.70<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/19edo">19</a>, (24), 26, 29c, 31, 33c, (36)...<br /> </td> </tr> <tr> <td>128/125<br /> </td> <td>[7, 0, -3><br /> </td> <td>41.1<br /> </td> <td><a class="wiki_link" href="/Augmented">Augmented</a><br /> </td> <td>399.02<br /> </td> <td>93.15<br /> </td> <td>3, 0<br /> </td> <td>5, -1<br /> </td> <td>7, 0<br /> </td> <td>2.42<br /> </td> <td>2.94<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/15edo">15</a>, (24), 27, (30), 33, (36), 39...<br /> </td> </tr> <tr> <td>135/128<br /> </td> <td>[-7, 3, 1><br /> </td> <td>92.2<br /> </td> <td><a class="wiki_link" href="/Mavila">Mavila</a><br /> </td> <td>1206.55<br /> </td> <td>685.03<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>1, 3<br /> </td> <td>2.44<br /> </td> <td>6.55<br /> </td> <td><a class="wiki_link" href="/37edo">37bc</a>, 67bbccc, (74bbccc), 81bbcccc...<br /> </td> </tr> <tr> <td>250/243<br /> </td> <td>[1, -5, 3><br /> </td> <td>49.2<br /> </td> <td><a class="wiki_link" href="/Porcupine">Porcupine</a><br /> </td> <td>1196.91<br /> </td> <td>1034.59<br /> </td> <td>1, 0<br /> </td> <td>2, -3<br /> </td> <td>3, -5<br /> </td> <td>2.75<br /> </td> <td>3.09<br /> </td> <td><a class="wiki_link" href="/15edo">15</a>, <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/29edo">29</a>, (30), 36c, 37, 43c, (44)...<br /> </td> </tr> <tr> <td>256/243<br /> </td> <td>[8, -5, 0><br /> </td> <td>90.2<br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a><br /> </td> <td>238.87<br /> </td> <td>158.78<br /> </td> <td>5, 0<br /> </td> <td>8, 0<br /> </td> <td>11, 1<br /> </td> <td>2.76<br /> </td> <td>5.67<br /> </td> <td><a class="wiki_link" href="/15edo">15</a>, <a class="wiki_link" href="/25edo">25</a>, (30), 35bc, 40b, (45bc)...<br /> </td> </tr> <tr> <td>648/625<br /> </td> <td>[3, 4, -4><br /> </td> <td>62.6<br /> </td> <td><a class="wiki_link" href="/Diminished">Diminished</a><br /> </td> <td>299.16<br /> </td> <td>197.49<br /> </td> <td>4, 0<br /> </td> <td>6, 1<br /> </td> <td>9, 1<br /> </td> <td>3.23<br /> </td> <td>3.36<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, (24), 28, 32c, (36), 40, 44c, (48c)...<br /> </td> </tr> <tr> <td>2048/2025<br /> </td> <td>[11, -4, -2><br /> </td> <td>19.6<br /> </td> <td><a class="wiki_link" href="/Srutal">Srutal</a><br /> </td> <td>599.56<br /> </td> <td>494.86<br /> </td> <td>2, 0<br /> </td> <td>3, 1<br /> </td> <td>5, -2<br /> </td> <td>3.81<br /> </td> <td>0.89<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, <a class="wiki_link" href="/22edo">22</a>, (24), 34, (36), (44), 46, (48c), 54...<br /> </td> </tr> <tr> <td>3125/3072<br /> </td> <td>[-10, -1, 5><br /> </td> <td>29.6<br /> </td> <td><a class="wiki_link" href="/Magic">Magic</a><br /> </td> <td>1201.28<br /> </td> <td>380.80<br /> </td> <td>1, 0<br /> </td> <td>0, 5<br /> </td> <td>2, 1<br /> </td> <td>4.02<br /> </td> <td>1.28<br /> </td> <td><a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/22edo">22</a>, (38), 41, (44), 54b, (57), 60...<br /> </td> </tr> <tr> <td>6561/6250<br /> </td> <td>[-1, 8, -5><br /> </td> <td>84.1<br /> </td> <td><a class="wiki_link" href="/Ripple">Ripple</a><br /> </td> <td>1203.32<br /> </td> <td>101.99<br /> </td> <td>1, 0<br /> </td> <td>2, -5<br /> </td> <td>3, -8<br /> </td> <td>4.38<br /> </td> <td>3.32<br /> </td> <td><a class="wiki_link" href="/12edo">12</a>, (24), (36), 47, (48c), 59b, (60c)...<br /> </td> </tr> <tr> <td>15625/15552<br /> </td> <td>[-6, -5, 6><br /> </td> <td>8.11<br /> </td> <td><a class="wiki_link" href="/Hanson">Hanson</a><br /> </td> <td>1200.29<br /> </td> <td>317.07<br /> </td> <td>1, 0<br /> </td> <td>0, 6<br /> </td> <td>1, 5<br /> </td> <td>4.83<br /> </td> <td>0.29<br /> </td> <td><a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/34edo">34</a>, (38), 49, 53, (57), 64b, (68)...<br /> </td> </tr> <tr> <td>16875/16384<br /> </td> <td>[-14, 3, 4><br /> </td> <td>51.1<br /> </td> <td><a class="wiki_link" href="/Negri">Negri</a><br /> </td> <td>1201.82<br /> </td> <td>1075.68<br /> </td> <td>1, 0<br /> </td> <td>2, -4<br /> </td> <td>2, 3<br /> </td> <td>4.86<br /> </td> <td>1.82<br /> </td> <td><a class="wiki_link" href="/19edo">19</a>, <a class="wiki_link" href="/29edo">29</a>, (38), 48, (57), (58c), 66b, 67c...<br /> </td> </tr> <tr> <td>20000/19683<br /> </td> <td>[5, -9, 4><br /> </td> <td>27.7<br /> </td> <td><a class="wiki_link" href="/Tetracot">Tetracot</a><br /> </td> <td>1199.03<br /> </td> <td>176.11<br /> </td> <td>1, 0<br /> </td> <td>1, 4<br /> </td> <td>1, 9<br /> </td> <td>4.95<br /> </td> <td>0.97<br /> </td> <td><a class="wiki_link" href="/27edo">27</a>, <a class="wiki_link" href="/34edo">34</a>, <a class="wiki_link" href="/41edo">41</a>, 48, (54c), 55c, 61, (68), 75...<br /> </td> </tr> <tr> <td>20480/19683<br /> </td> <td>[12, -9, 1><br /> </td> <td>68.7<br /> </td> <td><a class="wiki_link" href="/Superpyth">Superpyth</a><br /> </td> <td>1197.60<br /> </td> <td>708.17<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>6, -9<br /> </td> <td>4.95<br /> </td> <td>2.40<br /> </td> <td><a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/27edo">27</a>, (44), 49, (54c), (66), 71, 76bc...<br /> </td> </tr> <tr> <td>32805/32768<br /> </td> <td>[-15, 8, 1><br /> </td> <td>1.95<br /> </td> <td><a class="wiki_link" href="/Helmholtz">Helmholtz</a><br /> </td> <td>1200.07<br /> </td> <td>701.79<br /> </td> <td>1, 0<br /> </td> <td>2, -1<br /> </td> <td>-1, 8<br /> </td> <td>5.20<br /> </td> <td>0.07<br /> </td> <td><a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/65edo">65</a>, 70c, 77, (82), 89, 94, 99c...<br /> </td> </tr> <tr> <td>78732/78125<br /> </td> <td>[2, 9, -7><br /> </td> <td>13.4<br /> </td> <td><a class="wiki_link" href="/Sensi">Sensi</a><br /> </td> <td>1199.59<br /> </td> <td>756.60<br /> </td> <td>1, 0<br /> </td> <td>6, -7<br /> </td> <td>8, -9<br /> </td> <td>5.63<br /> </td> <td>0.41<br /> </td> <td><a class="wiki_link" href="/19edo">19</a>, (38), <a class="wiki_link" href="/46edo">46</a>, (57), 65, 73, (76), 84...<br /> </td> </tr> <tr> <td>262144/253125<br /> </td> <td>[18, -4, -5><br /> </td> <td>60.6<br /> </td> <td><a class="wiki_link" href="/Passion">Passion</a><br /> </td> <td>1198.31<br /> </td> <td>98.40<br /> </td> <td>1, 0<br /> </td> <td>2, -5<br /> </td> <td>2, 4<br /> </td> <td>6.23<br /> </td> <td>1.69<br /> </td> <td><a class="wiki_link" href="/73edo">73</a>, 134bc, (146bc), 158bcc...<br /> </td> </tr> <tr> <td>393216/390625<br /> </td> <td>[17, 1, -8><br /> </td> <td>11.4<br /> </td> <td><a class="wiki_link" href="/W%C3%BCrschmidt">Würschmidt</a><br /> </td> <td>1199.69<br /> </td> <td>812.05<br /> </td> <td>1, 0<br /> </td> <td>7, -8<br /> </td> <td>3, -1<br /> </td> <td>6.44<br /> </td> <td>0.31<br /> </td> <td><a class="wiki_link" href="/34edo">34</a>, 65, (68), 96, 99, (102)...<br /> </td> </tr> <tr> <td>531441/524288<br /> </td> <td>[-19, 12, 0><br /> </td> <td>23.5<br /> </td> <td><a class="wiki_link" href="/Compton">Compton</a><br /> </td> <td>100.05<br /> </td> <td>15.13<br /> </td> <td>12, 0<br /> </td> <td>19, 0<br /> </td> <td>28, -1<br /> </td> <td>6.59<br /> </td> <td>0.62<br /> </td> <td><a class="wiki_link" href="/60edo">60</a>, <a class="wiki_link" href="/72edo">72</a>, 84, 96, 108, (120c), 132...<br /> </td> </tr> <tr> <td>1600000/1594323<br /> </td> <td>[9, -13, 5><br /> </td> <td>6.15<br /> </td> <td><a class="wiki_link" href="/Amity">Amity</a><br /> </td> <td>1199.85<br /> </td> <td>860.38<br /> </td> <td>1, 0<br /> </td> <td>-2, 5<br /> </td> <td>-7, 13<br /> </td> <td>7.14<br /> </td> <td>0.15<br /> </td> <td><a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/99edo">99</a>, (106), 145, 152, (159)...<br /> </td> </tr> <tr> <td>2109375/2097152<br /> </td> <td>[-21, 3, 7><br /> </td> <td>10.1<br /> </td> <td><a class="wiki_link" href="/Orson">Orson</a><br /> </td> <td>1200.24<br /> </td> <td>271.65<br /> </td> <td>1, 0<br /> </td> <td>0, 7<br /> </td> <td>3, -3<br /> </td> <td>7.28<br /> </td> <td>0.24<br /> </td> <td><a class="wiki_link" href="/53edo">53</a>, (106), 137, (159), 190...<br /> </td> </tr> <tr> <td colspan="12">TWO BONUS TEMPS:<br /> </td> </tr> <tr> <td>6115295232/6103515625<br /> </td> <td>[23, 6, -14><br /> </td> <td>3.34<br /> </td> <td><a class="wiki_link" href="/Vishnu">Vishnu</a><br /> </td> <td>599.97<br /> </td> <td>71.15<br /> </td> <td>2, 0<br /> </td> <td>4, -7<br /> </td> <td>5, -3<br /> </td> <td><br /> </td> <td>0.05<br /> </td> <td><br /> </td> </tr> <tr> <td>274877906944/274658203125<br /> </td> <td>[38, -2, -15><br /> </td> <td>1.38<br /> </td> <td><a class="wiki_link" href="/Luna">Luna</a><br /> </td> <td>1199.98<br /> </td> <td>193.196<br /> </td> <td>1, 0<br /> </td> <td>4, -15<br /> </td> <td>2, 2<br /> </td> <td><br /> </td> <td>0.02<br /> </td> <td><br /> </td> </tr> </table> </body></html>