List of 31et rank two temperaments by badness

Revision as of 22:48, 10 April 2012 by Wikispaces>genewardsmith (**Imported revision 319307598 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-04-10 22:48:25 UTC.
The original revision id was 319307598.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below are listed rank-two temperaments supported by the 31et patent val, below the indicated cutoff in TE badness.

=5-limit temperaments with badness below 0.1=
Listed is the wedgie and the TE badness times 1000 for four temperaments with badness less than 0.1.
|| 1 || <<1 4 4]] || Meantone || 7.381 || 81/80 ||
|| 2 || <<15 -2 -38]] || Luna || 20.576 || 274877906944/274658203125 ||
|| 3 || <<8 1 -17]] || Würschmidt || 40.603 || 393216/390625 ||
|| 4 || <<7 -3 -21]] || Orson || 40.807 || 2109375/2097152 ||

=7-limit temperaments with badness below 0.06=
Listed is the wedgie and the TE badness times 1000 for 19 temperaments with badness less than 0.06.
|| Rank || Wedgie || Name || Badness || Commas ||
|| 1 || <<22 -5 3 -59 -57 21]] || Tertiaseptal || 12.995 || 2401/2400 65625/65536 ||
|| 2 || <<1 4 10 4 13 12]] || Meantone || 13.707 || 81/80 126/125 ||
|| 3 || <<6 -7 -2 -25 -20 15]] || Miracle || 16.742 || 225/224 1029/1024 ||
|| 4 || <<16 2 5 -34 -37 6]] || Hemiwürschmidt || 20.307 || 2401/2400 3136/3125 ||
|| 5 || <<7 -3 8 -21 -7 27]] || Orwell || 20.735 || 225/224 1728/1715 ||
|| 6 || <<10 9 7 -9 -17 -9]] || Myna || 27.044 || 126/125 1728/1715 ||
|| 7 || <<9 5 -3 -13 -30 -21]] || Valentine || 31.056 || 126/125 1029/1024 ||
|| 8 || <<38 -3 8 -93 -94 27]] || Quasiorwell || 35.832 || 2401/2400 29360128/29296875 ||
|| 9 || <<3 12 -1 12 -10 -36]] || Mothra/Cynder|| 37.146 || 81/80 1029/1024 ||
|| 10 || <<15 -2 -5 -38 -50 -6]] || Hemithirds || 44.284 || 1029/1024 3136/3125 ||
|| 11 || <<60 -8 11 -152 -151 48]] || Subneutral || 45.792 || 2401/2400 274877906944/274658203125 ||
|| 12 || <<4 16 9 16 3 -24]] || Squares || 45.993 || 81/80 2401/2400 ||
|| 13 || <<5 -11 -12 -29 -33 3]] || Tritonic || 47.578 || 225/224 50421/50000 ||
|| 14 || <<11 13 17 -5 -4 3]] || Nusecond || 50.389 || 126/125 2430/2401 ||
|| 15 || <<17 6 15 -30 -24 18]] || Semisept || 50.472 || 1728/1715 3136/3125 ||
|| 16 || <<8 1 18 -17 6 39]] || Würschmidt || 50.776 || 225/224 8748/8575 ||
|| 17 || <<23 -1 13 -55 -44 33]] || Grendel || 51.834 || 6144/6125 16875/16807 ||
|| 18 || <<2 8 -11 8 -23 -48]] || Mohajira || 55.714 || 81/80 6144/6125 ||
|| 19 || <<13 -10 6 -46 -27 42]] || Slender || 56.934 || 225/224 589824/588245 ||

=11-limit temperaments with badness below 0.05=
Listed is the wedgie and the TE badness times 1000 for 68 temperaments with badness less than 0.05.
|| Rank || Wedgie || Name || Badness || Commas ||
|| 1 || <<6 -7 -2 15 -25 -20 3 15 59 49]] || Miracle || 10.684 || 225/224 243/242 441/440 ||
|| 2 || <<7 -3 8 2 -21 -7 -21 27 15 -22]] || Orwell || 15.231 || 99/98 121/120 176/175 ||
|| 3 || <<44 -10 6 79 -118 -114 -27 42 218 201]] || Hemitert || 15.633 || 2401/2400 3025/3024 65625/65536 ||
|| 4 || <<9 5 -3 7 -13 -30 -20 -21 -1 30]] || Valentine || 16.687 || 121/120 126/125 176/175 ||
|| 5 || <<10 9 7 25 -9 -17 5 -9 27 46]] || Myna || 16.842 || 126/125 176/175 243/242 ||
|| 6 || <<1 4 10 18 4 13 25 12 28 16]] || Meantone || 17.027 || 81/80 99/98 126/125 ||
|| 7 || <<38 -3 8 64 -93 -94 -30 27 159 152]] || Quasiorwell || 17.540 || 2401/2400 3025/3024 5632/5625 ||
|| 8 || <<15 -2 -5 22 -38 -50 -17 -6 58 79]] || Hemithirds || 19.003 || 385/384 441/440 3136/3125 ||
|| 9 || <<23 -1 13 42 -55 -44 -13 33 101 73]] || Grendel || 19.845 || 540/539 1375/1372 5632/5625 ||
|| 10 || <<16 2 5 40 -34 -37 8 6 86 95]] || Hemiwürschmidt || 21.069 || 243/242 441/440 3136/3125 ||
|| 11 || <<1 4 10 -13 4 13 -24 12 -44 -71]] || Meanpop || 21.543 || 81/80 126/125 540/539 ||
|| 12 || <<4 16 9 10 16 3 2 -24 -32 -3]] || Squares || 21.636 || 81/80 99/98 121/120 ||
|| 13 || <<17 6 15 27 -30 -24 -16 18 42 24]] || Semisept || 22.476 || 176/175 540/539 1331/1323 ||
|| 14 || <<5 -11 -12 -3 -29 -33 -22 3 31 33]] || Tritonic || 23.659 || 121/120 225/224 441/440 ||
|| 15 || <<8 1 18 20 -17 6 4 39 43 -6]] || Würschmidt || 24.413 || 99/98 176/175 243/242 ||
|| 16 || <<13 -10 6 17 -46 -27 -18 42 74 27]] || Slender || 25.342 || 225/224 385/384 1331/1323 ||
|| 17 || <<2 8 20 5 8 26 1 24 -16 -55]] || Migration || 25.516 || 81/80 121/120 126/125 ||
|| 18 || <<11 13 17 12 -5 -4 -19 3 -17 -25]] || Nusecond || 25.621 || 99/98 121/120 126/125 ||
|| 19 || <<3 12 -1 -8 12 -10 -23 -36 -60 -19]] || Mothra || 25.642 || 81/80 99/98 385/384 ||
|| 20 || <<2 8 -11 5 8 -23 1 -48 -16 52]] || Mohajira || 26.064 || 81/80 121/120 176/175 ||
|| 21 || <<29 -8 11 57 -80 -64 -10 48 160 122]] || Eris || 27.621 || 540/539 1375/1372 65625/65536 ||
|| 22 || <<16 2 5 9 -34 -37 -41 6 14 8]] || Hemiwur || 29.270 || 121/120 176/175 1375/1372 ||
|| 23 || <<21 -9 -7 37 -63 -70 -14 9 117 128]] || Triwell || 29.807 || 385/384 441/440 456533/455625 ||
|| 24 || <<22 -5 3 24 -59 -57 -38 21 73 57]] || Tertia || 30.171 || 385/384 1331/1323 1375/1372 ||
|| 25 || <<82 -13 14 143 -211 -208 -57 69 377 353]] || || 30.609 || 2401/2400 3025/3024 369140625/369098752 ||
|| 26 || <<3 12 -1 23 12 -10 26 -36 12 68]] || || 31.334 || 81/80 540/539 1029/1024 ||
|| 27 || <<7 -3 8 33 -21 -7 28 27 87 65]] || || 31.438 || 225/224 441/440 1728/1715 ||
|| 28 || <<67 -11 19 121 -173 -158 -40 75 319 274]] || || 32.121 || 3025/3024 180224/180075 703125/702464 ||
|| 29 || <<6 -7 -2 -16 -25 -20 -46 15 -13 -38]] || || 32.946 || 99/98 176/175 1029/1024 ||
|| 30 || <<10 9 7 -6 -9 -17 -44 -9 -45 -41]] || || 33.434 || 99/98 126/125 385/384 ||
|| 31 || <<8 1 -13 20 -17 -43 4 -33 43 101]] || || 33.436 || 126/125 243/242 385/384 ||
|| 32 || <<32 4 10 49 -68 -74 -33 12 100 103]] || || 34.814 || 2401/2400 3025/3024 3136/3125 ||
|| 33 || <<22 -5 3 55 -59 -57 11 21 145 144]] || || 35.576 || 243/242 441/440 703125/702464 ||
|| 34 || <<28 -12 1 39 -84 -77 -35 36 132 106]] || || 36.493 || 385/384 1375/1372 14641/14580 ||
|| 35 || <<14 -6 16 35 -42 -14 7 54 102 43]] || || 38.377 || 225/224 243/242 2420/2401 ||
|| 36 || <<25 7 2 47 -47 -67 -12 -15 85 125]] || || 39.162 || 441/440 3388/3375 6144/6125 ||
|| 37 || <<4 -15 9 10 -33 3 2 63 75 -3]] || || 39.595 || 99/98 243/242 385/384 ||
|| 38 || <<31 0 0 62 -72 -87 -9 0 144 174]] || || 39.9210 || 441/440 3136/3125 41503/41472 ||
|| 39 || <<3 -19 -1 -8 -37 -10 -23 51 47 -19]] || || 40.217 || 99/98 121/120 1029/1024 ||
|| 40 || <<19 14 4 32 -22 -47 -15 -30 26 76]] || || 40.539 || 126/125 176/175 14641/14580 ||
|| 41 || <<54 -1 13 104 -127 -131 -22 33 245 247]] || || 41.496 || 2401/2400 5632/5625 46656/46585 ||
|| 42 || <<8 1 -13 -11 -17 -43 -45 -33 -29 14]] || || 41.680 || 126/125 176/175 14641/14406 ||
|| 43 || <<9 5 -3 38 -13 -30 29 -21 71 117]] || || 42.204 || 126/125 540/539 1029/1024 ||
|| 44 || <<12 -14 -4 -1 -50 -40 -43 30 46 11]] || || 42.687 || 121/120 225/224 1029/1024 ||
|| 45 || <<12 17 27 30 -1 9 6 15 11 -9]] || || 42.719 || 99/98 126/125 243/242 ||
|| 46 || <<5 20 19 28 20 16 27 -12 -4 13]] || || 42.869 || 81/80 99/98 2541/2500 ||
|| 47 || <<0 0 0 31 0 0 49 0 72 87]] || || 42.959 || 81/80 126/125 1029/1024 ||
|| 48 || <<11 -18 -14 12 -54 -53 -19 18 90 82]] || || 44.005 || 225/224 441/440 9317/9216 ||
|| 49 || <<11 13 17 43 -5 -4 30 3 55 62]] || || 44.041 || 126/125 176/175 2430/2401 ||
|| 50 || <<13 21 6 17 3 -27 -18 -45 -33 27]] || || 44.186 || 121/120 441/440 891/875 ||
|| 51 || <<26 11 12 34 -43 -54 -36 -3 41 54]] || || 44.660 || 176/175 1331/1323 2401/2400 ||
|| 52 || <<61 -4 21 106 -148 -138 -43 60 260 225]] || || 44.729 || 3025/3024 5632/5625 825000/823543 ||
|| 53 || <<60 -8 11 119 -152 -151 -19 48 304 296]] || || 44.888 || 2401/2400 46656/46585 172032/171875 ||
|| 54 || <<19 -17 4 32 -71 -47 -15 57 133 76]] || || 45.168 || 225/224 385/384 585640/583443 ||
|| 55 || <<5 -11 -12 28 -29 -33 27 3 103 120]] || || 45.456 || 225/224 385/384 27783/27500 ||
|| 56 || <<5 20 19 -3 20 16 -22 -12 -76 -74]] || || 45.466 || 81/80 540/539 1375/1372 ||
|| 57 || <<1 4 -21 -13 4 -36 -24 -60 -44 36]] || || 45.509 || 81/80 176/175 1331/1323 ||
|| 58 || <<18 10 25 45 -26 -11 9 30 70 40]] || || 45.7950 || 176/175 243/242 1375/1372 ||
|| 59 || <<39 1 18 82 -89 -81 -5 39 187 168]] || || 45.928 || 540/539 5632/5625 151263/151250 ||
|| 60 || <<2 -23 -11 5 -41 -23 1 39 91 52]] || || 46.181 || 243/242 441/440 1815/1792 ||
|| 61 || <<4 -15 -22 10 -33 -46 2 -9 75 104]] || || 46.462 || 225/224 243/242 1617/1600 ||
|| 62 || <<9 5 28 7 -13 19 -20 51 -1 -77]] || || 47.885 || 121/120 225/224 891/875 ||
|| 63 || <<33 8 20 67 -64 -61 -8 24 128 119]] || || 48.088 || 540/539 3136/3125 15488/15435 ||
|| 64 || <<14 -6 -15 4 -42 -63 -42 -18 30 63]] || || 48.150 || 121/120 441/440 3136/3125 ||
|| 65 || <<8 1 18 -11 -17 6 -45 39 -29 -93]] || || 48.186 || 225/224 385/384 891/875 ||
|| 66 || <<50 -17 4 94 -143 -134 -24 57 277 250]] || || 48.798 || 2401/2400 3025/3024 1265625/1261568 ||
|| 67 || <<7 -3 -23 2 -21 -56 -21 -45 15 85]] || || 49.572 || 121/120 126/125 2079/2048 ||
|| 68 || <<20 18 14 19 -18 -34 -39 -18 -18 5]] || || 49.917 || 121/120 126/125 1728/1715 ||


=13-limit temperaments with badness below 0.04=
Listed is the wedgie and the TE badness times 1000 for 40 temperaments with badness less than 0.04.
|| Rank || Wedgie || Name || Badness || Commas ||

Original HTML content:

<html><head><title>List of 31et rank two temperaments by badness</title></head><body>Below are listed rank-two temperaments supported by the 31et patent val, below the indicated cutoff in TE badness.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x5-limit temperaments with badness below 0.1"></a><!-- ws:end:WikiTextHeadingRule:0 -->5-limit temperaments with badness below 0.1</h1>
Listed is the wedgie and the TE badness times 1000 for four temperaments with badness less than 0.1.<br />


<table class="wiki_table">
    <tr>
        <td>1<br />
</td>
        <td>&lt;&lt;1 4 4]]<br />
</td>
        <td>Meantone<br />
</td>
        <td>7.381<br />
</td>
        <td>81/80<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>&lt;&lt;15 -2 -38]]<br />
</td>
        <td>Luna<br />
</td>
        <td>20.576<br />
</td>
        <td>274877906944/274658203125<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>&lt;&lt;8 1 -17]]<br />
</td>
        <td>Würschmidt<br />
</td>
        <td>40.603<br />
</td>
        <td>393216/390625<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>&lt;&lt;7 -3 -21]]<br />
</td>
        <td>Orson<br />
</td>
        <td>40.807<br />
</td>
        <td>2109375/2097152<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="x7-limit temperaments with badness below 0.06"></a><!-- ws:end:WikiTextHeadingRule:2 -->7-limit temperaments with badness below 0.06</h1>
Listed is the wedgie and the TE badness times 1000 for 19 temperaments with badness less than 0.06.<br />


<table class="wiki_table">
    <tr>
        <td>Rank<br />
</td>
        <td>Wedgie<br />
</td>
        <td>Name<br />
</td>
        <td>Badness<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>&lt;&lt;22 -5 3 -59 -57 21]]<br />
</td>
        <td>Tertiaseptal<br />
</td>
        <td>12.995<br />
</td>
        <td>2401/2400 65625/65536<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>&lt;&lt;1 4 10 4 13 12]]<br />
</td>
        <td>Meantone<br />
</td>
        <td>13.707<br />
</td>
        <td>81/80 126/125<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>&lt;&lt;6 -7 -2 -25 -20 15]]<br />
</td>
        <td>Miracle<br />
</td>
        <td>16.742<br />
</td>
        <td>225/224 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>&lt;&lt;16 2 5 -34 -37 6]]<br />
</td>
        <td>Hemiwürschmidt<br />
</td>
        <td>20.307<br />
</td>
        <td>2401/2400 3136/3125<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>&lt;&lt;7 -3 8 -21 -7 27]]<br />
</td>
        <td>Orwell<br />
</td>
        <td>20.735<br />
</td>
        <td>225/224 1728/1715<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>&lt;&lt;10 9 7 -9 -17 -9]]<br />
</td>
        <td>Myna<br />
</td>
        <td>27.044<br />
</td>
        <td>126/125 1728/1715<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>&lt;&lt;9 5 -3 -13 -30 -21]]<br />
</td>
        <td>Valentine<br />
</td>
        <td>31.056<br />
</td>
        <td>126/125 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>&lt;&lt;38 -3 8 -93 -94 27]]<br />
</td>
        <td>Quasiorwell<br />
</td>
        <td>35.832<br />
</td>
        <td>2401/2400 29360128/29296875<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>&lt;&lt;3 12 -1 12 -10 -36]]<br />
</td>
        <td>Mothra/Cynder<br />
</td>
        <td>37.146<br />
</td>
        <td>81/80 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>&lt;&lt;15 -2 -5 -38 -50 -6]]<br />
</td>
        <td>Hemithirds<br />
</td>
        <td>44.284<br />
</td>
        <td>1029/1024 3136/3125<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>&lt;&lt;60 -8 11 -152 -151 48]]<br />
</td>
        <td>Subneutral<br />
</td>
        <td>45.792<br />
</td>
        <td>2401/2400 274877906944/274658203125<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>&lt;&lt;4 16 9 16 3 -24]]<br />
</td>
        <td>Squares<br />
</td>
        <td>45.993<br />
</td>
        <td>81/80 2401/2400<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>&lt;&lt;5 -11 -12 -29 -33 3]]<br />
</td>
        <td>Tritonic<br />
</td>
        <td>47.578<br />
</td>
        <td>225/224 50421/50000<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>&lt;&lt;11 13 17 -5 -4 3]]<br />
</td>
        <td>Nusecond<br />
</td>
        <td>50.389<br />
</td>
        <td>126/125 2430/2401<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>&lt;&lt;17 6 15 -30 -24 18]]<br />
</td>
        <td>Semisept<br />
</td>
        <td>50.472<br />
</td>
        <td>1728/1715 3136/3125<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>&lt;&lt;8 1 18 -17 6 39]]<br />
</td>
        <td>Würschmidt<br />
</td>
        <td>50.776<br />
</td>
        <td>225/224 8748/8575<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>&lt;&lt;23 -1 13 -55 -44 33]]<br />
</td>
        <td>Grendel<br />
</td>
        <td>51.834<br />
</td>
        <td>6144/6125 16875/16807<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>&lt;&lt;2 8 -11 8 -23 -48]]<br />
</td>
        <td>Mohajira<br />
</td>
        <td>55.714<br />
</td>
        <td>81/80 6144/6125<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>&lt;&lt;13 -10 6 -46 -27 42]]<br />
</td>
        <td>Slender<br />
</td>
        <td>56.934<br />
</td>
        <td>225/224 589824/588245<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="x11-limit temperaments with badness below 0.05"></a><!-- ws:end:WikiTextHeadingRule:4 -->11-limit temperaments with badness below 0.05</h1>
Listed is the wedgie and the TE badness times 1000 for 68 temperaments with badness less than 0.05.<br />


<table class="wiki_table">
    <tr>
        <td>Rank<br />
</td>
        <td>Wedgie<br />
</td>
        <td>Name<br />
</td>
        <td>Badness<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>&lt;&lt;6 -7 -2 15 -25 -20 3 15 59 49]]<br />
</td>
        <td>Miracle<br />
</td>
        <td>10.684<br />
</td>
        <td>225/224 243/242 441/440<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>&lt;&lt;7 -3 8 2 -21 -7 -21 27 15 -22]]<br />
</td>
        <td>Orwell<br />
</td>
        <td>15.231<br />
</td>
        <td>99/98 121/120 176/175<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>&lt;&lt;44 -10 6 79 -118 -114 -27 42 218 201]]<br />
</td>
        <td>Hemitert<br />
</td>
        <td>15.633<br />
</td>
        <td>2401/2400 3025/3024 65625/65536<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>&lt;&lt;9 5 -3 7 -13 -30 -20 -21 -1 30]]<br />
</td>
        <td>Valentine<br />
</td>
        <td>16.687<br />
</td>
        <td>121/120 126/125 176/175<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>&lt;&lt;10 9 7 25 -9 -17 5 -9 27 46]]<br />
</td>
        <td>Myna<br />
</td>
        <td>16.842<br />
</td>
        <td>126/125 176/175 243/242<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>&lt;&lt;1 4 10 18 4 13 25 12 28 16]]<br />
</td>
        <td>Meantone<br />
</td>
        <td>17.027<br />
</td>
        <td>81/80 99/98 126/125<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>&lt;&lt;38 -3 8 64 -93 -94 -30 27 159 152]]<br />
</td>
        <td>Quasiorwell<br />
</td>
        <td>17.540<br />
</td>
        <td>2401/2400 3025/3024 5632/5625<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>&lt;&lt;15 -2 -5 22 -38 -50 -17 -6 58 79]]<br />
</td>
        <td>Hemithirds<br />
</td>
        <td>19.003<br />
</td>
        <td>385/384 441/440 3136/3125<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>&lt;&lt;23 -1 13 42 -55 -44 -13 33 101 73]]<br />
</td>
        <td>Grendel<br />
</td>
        <td>19.845<br />
</td>
        <td>540/539 1375/1372 5632/5625<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>&lt;&lt;16 2 5 40 -34 -37 8 6 86 95]]<br />
</td>
        <td>Hemiwürschmidt<br />
</td>
        <td>21.069<br />
</td>
        <td>243/242 441/440 3136/3125<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>&lt;&lt;1 4 10 -13 4 13 -24 12 -44 -71]]<br />
</td>
        <td>Meanpop<br />
</td>
        <td>21.543<br />
</td>
        <td>81/80 126/125 540/539<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>&lt;&lt;4 16 9 10 16 3 2 -24 -32 -3]]<br />
</td>
        <td>Squares<br />
</td>
        <td>21.636<br />
</td>
        <td>81/80 99/98 121/120<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>&lt;&lt;17 6 15 27 -30 -24 -16 18 42 24]]<br />
</td>
        <td>Semisept<br />
</td>
        <td>22.476<br />
</td>
        <td>176/175 540/539 1331/1323<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>&lt;&lt;5 -11 -12 -3 -29 -33 -22 3 31 33]]<br />
</td>
        <td>Tritonic<br />
</td>
        <td>23.659<br />
</td>
        <td>121/120 225/224 441/440<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>&lt;&lt;8 1 18 20 -17 6 4 39 43 -6]]<br />
</td>
        <td>Würschmidt<br />
</td>
        <td>24.413<br />
</td>
        <td>99/98 176/175 243/242<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>&lt;&lt;13 -10 6 17 -46 -27 -18 42 74 27]]<br />
</td>
        <td>Slender<br />
</td>
        <td>25.342<br />
</td>
        <td>225/224 385/384 1331/1323<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>&lt;&lt;2 8 20 5 8 26 1 24 -16 -55]]<br />
</td>
        <td>Migration<br />
</td>
        <td>25.516<br />
</td>
        <td>81/80 121/120 126/125<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>&lt;&lt;11 13 17 12 -5 -4 -19 3 -17 -25]]<br />
</td>
        <td>Nusecond<br />
</td>
        <td>25.621<br />
</td>
        <td>99/98 121/120 126/125<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>&lt;&lt;3 12 -1 -8 12 -10 -23 -36 -60 -19]]<br />
</td>
        <td>Mothra<br />
</td>
        <td>25.642<br />
</td>
        <td>81/80 99/98 385/384<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>&lt;&lt;2 8 -11 5 8 -23 1 -48 -16 52]]<br />
</td>
        <td>Mohajira<br />
</td>
        <td>26.064<br />
</td>
        <td>81/80 121/120 176/175<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>&lt;&lt;29 -8 11 57 -80 -64 -10 48 160 122]]<br />
</td>
        <td>Eris<br />
</td>
        <td>27.621<br />
</td>
        <td>540/539 1375/1372 65625/65536<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>&lt;&lt;16 2 5 9 -34 -37 -41 6 14 8]]<br />
</td>
        <td>Hemiwur<br />
</td>
        <td>29.270<br />
</td>
        <td>121/120 176/175 1375/1372<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>&lt;&lt;21 -9 -7 37 -63 -70 -14 9 117 128]]<br />
</td>
        <td>Triwell<br />
</td>
        <td>29.807<br />
</td>
        <td>385/384 441/440 456533/455625<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>&lt;&lt;22 -5 3 24 -59 -57 -38 21 73 57]]<br />
</td>
        <td>Tertia<br />
</td>
        <td>30.171<br />
</td>
        <td>385/384 1331/1323 1375/1372<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>&lt;&lt;82 -13 14 143 -211 -208 -57 69 377 353]]<br />
</td>
        <td><br />
</td>
        <td>30.609<br />
</td>
        <td>2401/2400 3025/3024 369140625/369098752<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>&lt;&lt;3 12 -1 23 12 -10 26 -36 12 68]]<br />
</td>
        <td><br />
</td>
        <td>31.334<br />
</td>
        <td>81/80 540/539 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>&lt;&lt;7 -3 8 33 -21 -7 28 27 87 65]]<br />
</td>
        <td><br />
</td>
        <td>31.438<br />
</td>
        <td>225/224 441/440 1728/1715<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>&lt;&lt;67 -11 19 121 -173 -158 -40 75 319 274]]<br />
</td>
        <td><br />
</td>
        <td>32.121<br />
</td>
        <td>3025/3024 180224/180075 703125/702464<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>&lt;&lt;6 -7 -2 -16 -25 -20 -46 15 -13 -38]]<br />
</td>
        <td><br />
</td>
        <td>32.946<br />
</td>
        <td>99/98 176/175 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>&lt;&lt;10 9 7 -6 -9 -17 -44 -9 -45 -41]]<br />
</td>
        <td><br />
</td>
        <td>33.434<br />
</td>
        <td>99/98 126/125 385/384<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>&lt;&lt;8 1 -13 20 -17 -43 4 -33 43 101]]<br />
</td>
        <td><br />
</td>
        <td>33.436<br />
</td>
        <td>126/125 243/242 385/384<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>&lt;&lt;32 4 10 49 -68 -74 -33 12 100 103]]<br />
</td>
        <td><br />
</td>
        <td>34.814<br />
</td>
        <td>2401/2400 3025/3024 3136/3125<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>&lt;&lt;22 -5 3 55 -59 -57 11 21 145 144]]<br />
</td>
        <td><br />
</td>
        <td>35.576<br />
</td>
        <td>243/242 441/440 703125/702464<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>&lt;&lt;28 -12 1 39 -84 -77 -35 36 132 106]]<br />
</td>
        <td><br />
</td>
        <td>36.493<br />
</td>
        <td>385/384 1375/1372 14641/14580<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>&lt;&lt;14 -6 16 35 -42 -14 7 54 102 43]]<br />
</td>
        <td><br />
</td>
        <td>38.377<br />
</td>
        <td>225/224 243/242 2420/2401<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>&lt;&lt;25 7 2 47 -47 -67 -12 -15 85 125]]<br />
</td>
        <td><br />
</td>
        <td>39.162<br />
</td>
        <td>441/440 3388/3375 6144/6125<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>&lt;&lt;4 -15 9 10 -33 3 2 63 75 -3]]<br />
</td>
        <td><br />
</td>
        <td>39.595<br />
</td>
        <td>99/98 243/242 385/384<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>&lt;&lt;31 0 0 62 -72 -87 -9 0 144 174]]<br />
</td>
        <td><br />
</td>
        <td>39.9210<br />
</td>
        <td>441/440 3136/3125 41503/41472<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>&lt;&lt;3 -19 -1 -8 -37 -10 -23 51 47 -19]]<br />
</td>
        <td><br />
</td>
        <td>40.217<br />
</td>
        <td>99/98 121/120 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>&lt;&lt;19 14 4 32 -22 -47 -15 -30 26 76]]<br />
</td>
        <td><br />
</td>
        <td>40.539<br />
</td>
        <td>126/125 176/175 14641/14580<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>&lt;&lt;54 -1 13 104 -127 -131 -22 33 245 247]]<br />
</td>
        <td><br />
</td>
        <td>41.496<br />
</td>
        <td>2401/2400 5632/5625 46656/46585<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>&lt;&lt;8 1 -13 -11 -17 -43 -45 -33 -29 14]]<br />
</td>
        <td><br />
</td>
        <td>41.680<br />
</td>
        <td>126/125 176/175 14641/14406<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>&lt;&lt;9 5 -3 38 -13 -30 29 -21 71 117]]<br />
</td>
        <td><br />
</td>
        <td>42.204<br />
</td>
        <td>126/125 540/539 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>&lt;&lt;12 -14 -4 -1 -50 -40 -43 30 46 11]]<br />
</td>
        <td><br />
</td>
        <td>42.687<br />
</td>
        <td>121/120 225/224 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>&lt;&lt;12 17 27 30 -1 9 6 15 11 -9]]<br />
</td>
        <td><br />
</td>
        <td>42.719<br />
</td>
        <td>99/98 126/125 243/242<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>&lt;&lt;5 20 19 28 20 16 27 -12 -4 13]]<br />
</td>
        <td><br />
</td>
        <td>42.869<br />
</td>
        <td>81/80 99/98 2541/2500<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>&lt;&lt;0 0 0 31 0 0 49 0 72 87]]<br />
</td>
        <td><br />
</td>
        <td>42.959<br />
</td>
        <td>81/80 126/125 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>&lt;&lt;11 -18 -14 12 -54 -53 -19 18 90 82]]<br />
</td>
        <td><br />
</td>
        <td>44.005<br />
</td>
        <td>225/224 441/440 9317/9216<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>&lt;&lt;11 13 17 43 -5 -4 30 3 55 62]]<br />
</td>
        <td><br />
</td>
        <td>44.041<br />
</td>
        <td>126/125 176/175 2430/2401<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>&lt;&lt;13 21 6 17 3 -27 -18 -45 -33 27]]<br />
</td>
        <td><br />
</td>
        <td>44.186<br />
</td>
        <td>121/120 441/440 891/875<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>&lt;&lt;26 11 12 34 -43 -54 -36 -3 41 54]]<br />
</td>
        <td><br />
</td>
        <td>44.660<br />
</td>
        <td>176/175 1331/1323 2401/2400<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>&lt;&lt;61 -4 21 106 -148 -138 -43 60 260 225]]<br />
</td>
        <td><br />
</td>
        <td>44.729<br />
</td>
        <td>3025/3024 5632/5625 825000/823543<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>&lt;&lt;60 -8 11 119 -152 -151 -19 48 304 296]]<br />
</td>
        <td><br />
</td>
        <td>44.888<br />
</td>
        <td>2401/2400 46656/46585 172032/171875<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>&lt;&lt;19 -17 4 32 -71 -47 -15 57 133 76]]<br />
</td>
        <td><br />
</td>
        <td>45.168<br />
</td>
        <td>225/224 385/384 585640/583443<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>&lt;&lt;5 -11 -12 28 -29 -33 27 3 103 120]]<br />
</td>
        <td><br />
</td>
        <td>45.456<br />
</td>
        <td>225/224 385/384 27783/27500<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>&lt;&lt;5 20 19 -3 20 16 -22 -12 -76 -74]]<br />
</td>
        <td><br />
</td>
        <td>45.466<br />
</td>
        <td>81/80 540/539 1375/1372<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>&lt;&lt;1 4 -21 -13 4 -36 -24 -60 -44 36]]<br />
</td>
        <td><br />
</td>
        <td>45.509<br />
</td>
        <td>81/80 176/175 1331/1323<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>&lt;&lt;18 10 25 45 -26 -11 9 30 70 40]]<br />
</td>
        <td><br />
</td>
        <td>45.7950<br />
</td>
        <td>176/175 243/242 1375/1372<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>&lt;&lt;39 1 18 82 -89 -81 -5 39 187 168]]<br />
</td>
        <td><br />
</td>
        <td>45.928<br />
</td>
        <td>540/539 5632/5625 151263/151250<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>&lt;&lt;2 -23 -11 5 -41 -23 1 39 91 52]]<br />
</td>
        <td><br />
</td>
        <td>46.181<br />
</td>
        <td>243/242 441/440 1815/1792<br />
</td>
    </tr>
    <tr>
        <td>61<br />
</td>
        <td>&lt;&lt;4 -15 -22 10 -33 -46 2 -9 75 104]]<br />
</td>
        <td><br />
</td>
        <td>46.462<br />
</td>
        <td>225/224 243/242 1617/1600<br />
</td>
    </tr>
    <tr>
        <td>62<br />
</td>
        <td>&lt;&lt;9 5 28 7 -13 19 -20 51 -1 -77]]<br />
</td>
        <td><br />
</td>
        <td>47.885<br />
</td>
        <td>121/120 225/224 891/875<br />
</td>
    </tr>
    <tr>
        <td>63<br />
</td>
        <td>&lt;&lt;33 8 20 67 -64 -61 -8 24 128 119]]<br />
</td>
        <td><br />
</td>
        <td>48.088<br />
</td>
        <td>540/539 3136/3125 15488/15435<br />
</td>
    </tr>
    <tr>
        <td>64<br />
</td>
        <td>&lt;&lt;14 -6 -15 4 -42 -63 -42 -18 30 63]]<br />
</td>
        <td><br />
</td>
        <td>48.150<br />
</td>
        <td>121/120 441/440 3136/3125<br />
</td>
    </tr>
    <tr>
        <td>65<br />
</td>
        <td>&lt;&lt;8 1 18 -11 -17 6 -45 39 -29 -93]]<br />
</td>
        <td><br />
</td>
        <td>48.186<br />
</td>
        <td>225/224 385/384 891/875<br />
</td>
    </tr>
    <tr>
        <td>66<br />
</td>
        <td>&lt;&lt;50 -17 4 94 -143 -134 -24 57 277 250]]<br />
</td>
        <td><br />
</td>
        <td>48.798<br />
</td>
        <td>2401/2400 3025/3024 1265625/1261568<br />
</td>
    </tr>
    <tr>
        <td>67<br />
</td>
        <td>&lt;&lt;7 -3 -23 2 -21 -56 -21 -45 15 85]]<br />
</td>
        <td><br />
</td>
        <td>49.572<br />
</td>
        <td>121/120 126/125 2079/2048<br />
</td>
    </tr>
    <tr>
        <td>68<br />
</td>
        <td>&lt;&lt;20 18 14 19 -18 -34 -39 -18 -18 5]]<br />
</td>
        <td><br />
</td>
        <td>49.917<br />
</td>
        <td>121/120 126/125 1728/1715<br />
</td>
    </tr>
</table>

<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="x13-limit temperaments with badness below 0.04"></a><!-- ws:end:WikiTextHeadingRule:6 -->13-limit temperaments with badness below 0.04</h1>
Listed is the wedgie and the TE badness times 1000 for 40 temperaments with badness less than 0.04.<br />


<table class="wiki_table">
    <tr>
        <td>Rank<br />
</td>
        <td>Wedgie<br />
</td>
        <td>Name<br />
</td>
        <td>Badness<br />
</td>
        <td>Commas<br />
</td>
    </tr>
</table>

</body></html>