List of 31et rank two temperaments by badness
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author guest and made on 2012-04-19 03:30:41 UTC.
- The original revision id was 322497096.
- The revision comment was: concise definition of "badness" needed
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Below are listed rank-two temperaments supported by the 31et [[patent val]], below the indicated cutoff in TE badness. =5-limit temperaments with badness below 0.1= Listed is the wedgie and the TE badness times 1000 for four temperaments with [[badness]] less than 0.1. || 1 || <<1 4 4]] || Meantone || 7.381 || 81/80 || || 2 || <<15 -2 -38]] || Luna || 20.576 || 274877906944/274658203125 || || 3 || <<8 1 -17]] || Würschmidt || 40.603 || 393216/390625 || || 4 || <<7 -3 -21]] || Orson || 40.807 || 2109375/2097152 || =7-limit temperaments with badness below 0.06= Listed is the wedgie and the TE badness times 1000 for 19 temperaments with badness less than 0.06. || Rank || Wedgie || Name || Badness || Commas || || 1 || <<22 -5 3 -59 -57 21]] || Tertiaseptal || 12.995 || 2401/2400 65625/65536 || || 2 || <<1 4 10 4 13 12]] || Meantone || 13.707 || 81/80 126/125 || || 3 || <<6 -7 -2 -25 -20 15]] || Miracle || 16.742 || 225/224 1029/1024 || || 4 || <<16 2 5 -34 -37 6]] || Hemiwürschmidt || 20.307 || 2401/2400 3136/3125 || || 5 || <<7 -3 8 -21 -7 27]] || Orwell || 20.735 || 225/224 1728/1715 || || 6 || <<10 9 7 -9 -17 -9]] || Myna || 27.044 || 126/125 1728/1715 || || 7 || <<9 5 -3 -13 -30 -21]] || Valentine || 31.056 || 126/125 1029/1024 || || 8 || <<38 -3 8 -93 -94 27]] || Quasiorwell || 35.832 || 2401/2400 29360128/29296875 || || 9 || <<3 12 -1 12 -10 -36]] || Mothra/Cynder || 37.146 || 81/80 1029/1024 || || 10 || <<15 -2 -5 -38 -50 -6]] || Hemithirds || 44.284 || 1029/1024 3136/3125 || || 11 || <<60 -8 11 -152 -151 48]] || Subneutral || 45.792 || 2401/2400 274877906944/274658203125 || || 12 || <<4 16 9 16 3 -24]] || Squares || 45.993 || 81/80 2401/2400 || || 13 || <<5 -11 -12 -29 -33 3]] || Tritonic || 47.578 || 225/224 50421/50000 || || 14 || <<11 13 17 -5 -4 3]] || Nusecond || 50.389 || 126/125 2430/2401 || || 15 || <<17 6 15 -30 -24 18]] || Semisept || 50.472 || 1728/1715 3136/3125 || || 16 || <<8 1 18 -17 6 39]] || Würschmidt || 50.776 || 225/224 8748/8575 || || 17 || <<23 -1 13 -55 -44 33]] || Grendel || 51.834 || 6144/6125 16875/16807 || || 18 || <<2 8 -11 8 -23 -48]] || Mohajira || 55.714 || 81/80 6144/6125 || || 19 || <<13 -10 6 -46 -27 42]] || Slender || 56.934 || 225/224 589824/588245 || =11-limit temperaments with badness below 0.05= Listed is the wedgie and the TE badness times 1000 for 68 temperaments with badness less than 0.05. || Rank || Wedgie || Name || Badness || Commas || || 1 || <<6 -7 -2 15 -25 -20 3 15 59 49]] || Miracle || 10.684 || 225/224 243/242 441/440 || || 2 || <<7 -3 8 2 -21 -7 -21 27 15 -22]] || Orwell || 15.231 || 99/98 121/120 176/175 || || 3 || <<44 -10 6 79 -118 -114 -27 42 218 201]] || Hemitert || 15.633 || 2401/2400 3025/3024 65625/65536 || || 4 || <<9 5 -3 7 -13 -30 -20 -21 -1 30]] || Valentine || 16.687 || 121/120 126/125 176/175 || || 5 || <<10 9 7 25 -9 -17 5 -9 27 46]] || Myna || 16.842 || 126/125 176/175 243/242 || || 6 || <<1 4 10 18 4 13 25 12 28 16]] || Meantone || 17.027 || 81/80 99/98 126/125 || || 7 || <<38 -3 8 64 -93 -94 -30 27 159 152]] || Quasiorwell || 17.540 || 2401/2400 3025/3024 5632/5625 || || 8 || <<15 -2 -5 22 -38 -50 -17 -6 58 79]] || Hemithirds || 19.003 || 385/384 441/440 3136/3125 || || 9 || <<23 -1 13 42 -55 -44 -13 33 101 73]] || Grendel || 19.845 || 540/539 1375/1372 5632/5625 || || 10 || <<16 2 5 40 -34 -37 8 6 86 95]] || Hemiwürschmidt || 21.069 || 243/242 441/440 3136/3125 || || 11 || <<1 4 10 -13 4 13 -24 12 -44 -71]] || Meanpop || 21.543 || 81/80 126/125 540/539 || || 12 || <<4 16 9 10 16 3 2 -24 -32 -3]] || Squares || 21.636 || 81/80 99/98 121/120 || || 13 || <<17 6 15 27 -30 -24 -16 18 42 24]] || Semisept || 22.476 || 176/175 540/539 1331/1323 || || 14 || <<5 -11 -12 -3 -29 -33 -22 3 31 33]] || Tritonic || 23.659 || 121/120 225/224 441/440 || || 15 || <<8 1 18 20 -17 6 4 39 43 -6]] || Würschmidt || 24.413 || 99/98 176/175 243/242 || || 16 || <<13 -10 6 17 -46 -27 -18 42 74 27]] || Slender || 25.342 || 225/224 385/384 1331/1323 || || 17 || <<2 8 20 5 8 26 1 24 -16 -55]] || Migration || 25.516 || 81/80 121/120 126/125 || || 18 || <<11 13 17 12 -5 -4 -19 3 -17 -25]] || Nusecond || 25.621 || 99/98 121/120 126/125 || || 19 || <<3 12 -1 -8 12 -10 -23 -36 -60 -19]] || Mothra || 25.642 || 81/80 99/98 385/384 || || 20 || <<2 8 -11 5 8 -23 1 -48 -16 52]] || Mohajira || 26.064 || 81/80 121/120 176/175 || || 21 || <<29 -8 11 57 -80 -64 -10 48 160 122]] || Eris || 27.621 || 540/539 1375/1372 65625/65536 || || 22 || <<16 2 5 9 -34 -37 -41 6 14 8]] || Hemiwur || 29.270 || 121/120 176/175 1375/1372 || || 23 || <<21 -9 -7 37 -63 -70 -14 9 117 128]] || Triwell || 29.807 || 385/384 441/440 456533/455625 || || 24 || <<22 -5 3 24 -59 -57 -38 21 73 57]] || Tertia || 30.171 || 385/384 1331/1323 1375/1372 || || 25 || <<82 -13 14 143 -211 -208 -57 69 377 353]] || || 30.609 || 2401/2400 3025/3024 369140625/369098752 || || 26 || <<3 12 -1 23 12 -10 26 -36 12 68]] || || 31.334 || 81/80 540/539 1029/1024 || || 27 || <<7 -3 8 33 -21 -7 28 27 87 65]] || || 31.438 || 225/224 441/440 1728/1715 || || 28 || <<67 -11 19 121 -173 -158 -40 75 319 274]] || || 32.121 || 3025/3024 180224/180075 703125/702464 || || 29 || <<6 -7 -2 -16 -25 -20 -46 15 -13 -38]] || || 32.946 || 99/98 176/175 1029/1024 || || 30 || <<10 9 7 -6 -9 -17 -44 -9 -45 -41]] || || 33.434 || 99/98 126/125 385/384 || || 31 || <<8 1 -13 20 -17 -43 4 -33 43 101]] || || 33.436 || 126/125 243/242 385/384 || || 32 || <<32 4 10 49 -68 -74 -33 12 100 103]] || || 34.814 || 2401/2400 3025/3024 3136/3125 || || 33 || <<22 -5 3 55 -59 -57 11 21 145 144]] || || 35.576 || 243/242 441/440 703125/702464 || || 34 || <<28 -12 1 39 -84 -77 -35 36 132 106]] || || 36.493 || 385/384 1375/1372 14641/14580 || || 35 || <<14 -6 16 35 -42 -14 7 54 102 43]] || || 38.377 || 225/224 243/242 2420/2401 || || 36 || <<25 7 2 47 -47 -67 -12 -15 85 125]] || || 39.162 || 441/440 3388/3375 6144/6125 || || 37 || <<4 -15 9 10 -33 3 2 63 75 -3]] || || 39.595 || 99/98 243/242 385/384 || || 38 || <<31 0 0 62 -72 -87 -9 0 144 174]] || || 39.9210 || 441/440 3136/3125 41503/41472 || || 39 || <<3 -19 -1 -8 -37 -10 -23 51 47 -19]] || || 40.217 || 99/98 121/120 1029/1024 || || 40 || <<19 14 4 32 -22 -47 -15 -30 26 76]] || || 40.539 || 126/125 176/175 14641/14580 || || 41 || <<54 -1 13 104 -127 -131 -22 33 245 247]] || || 41.496 || 2401/2400 5632/5625 46656/46585 || || 42 || <<8 1 -13 -11 -17 -43 -45 -33 -29 14]] || || 41.680 || 126/125 176/175 14641/14406 || || 43 || <<9 5 -3 38 -13 -30 29 -21 71 117]] || || 42.204 || 126/125 540/539 1029/1024 || || 44 || <<12 -14 -4 -1 -50 -40 -43 30 46 11]] || || 42.687 || 121/120 225/224 1029/1024 || || 45 || <<12 17 27 30 -1 9 6 15 11 -9]] || || 42.719 || 99/98 126/125 243/242 || || 46 || <<5 20 19 28 20 16 27 -12 -4 13]] || || 42.869 || 81/80 99/98 2541/2500 || || 47 || <<0 0 0 31 0 0 49 0 72 87]] || || 42.959 || 81/80 126/125 1029/1024 || || 48 || <<11 -18 -14 12 -54 -53 -19 18 90 82]] || || 44.005 || 225/224 441/440 9317/9216 || || 49 || <<11 13 17 43 -5 -4 30 3 55 62]] || || 44.041 || 126/125 176/175 2430/2401 || || 50 || <<13 21 6 17 3 -27 -18 -45 -33 27]] || || 44.186 || 121/120 441/440 891/875 || || 51 || <<26 11 12 34 -43 -54 -36 -3 41 54]] || || 44.660 || 176/175 1331/1323 2401/2400 || || 52 || <<61 -4 21 106 -148 -138 -43 60 260 225]] || || 44.729 || 3025/3024 5632/5625 825000/823543 || || 53 || <<60 -8 11 119 -152 -151 -19 48 304 296]] || || 44.888 || 2401/2400 46656/46585 172032/171875 || || 54 || <<19 -17 4 32 -71 -47 -15 57 133 76]] || || 45.168 || 225/224 385/384 585640/583443 || || 55 || <<5 -11 -12 28 -29 -33 27 3 103 120]] || || 45.456 || 225/224 385/384 27783/27500 || || 56 || <<5 20 19 -3 20 16 -22 -12 -76 -74]] || || 45.466 || 81/80 540/539 1375/1372 || || 57 || <<1 4 -21 -13 4 -36 -24 -60 -44 36]] || || 45.509 || 81/80 176/175 1331/1323 || || 58 || <<18 10 25 45 -26 -11 9 30 70 40]] || || 45.7950 || 176/175 243/242 1375/1372 || || 59 || <<39 1 18 82 -89 -81 -5 39 187 168]] || || 45.928 || 540/539 5632/5625 151263/151250 || || 60 || <<2 -23 -11 5 -41 -23 1 39 91 52]] || || 46.181 || 243/242 441/440 1815/1792 || || 61 || <<4 -15 -22 10 -33 -46 2 -9 75 104]] || || 46.462 || 225/224 243/242 1617/1600 || || 62 || <<9 5 28 7 -13 19 -20 51 -1 -77]] || || 47.885 || 121/120 225/224 891/875 || || 63 || <<33 8 20 67 -64 -61 -8 24 128 119]] || || 48.088 || 540/539 3136/3125 15488/15435 || || 64 || <<14 -6 -15 4 -42 -63 -42 -18 30 63]] || || 48.150 || 121/120 441/440 3136/3125 || || 65 || <<8 1 18 -11 -17 6 -45 39 -29 -93]] || || 48.186 || 225/224 385/384 891/875 || || 66 || <<50 -17 4 94 -143 -134 -24 57 277 250]] || || 48.798 || 2401/2400 3025/3024 1265625/1261568 || || 67 || <<7 -3 -23 2 -21 -56 -21 -45 15 85]] || || 49.572 || 121/120 126/125 2079/2048 || || 68 || <<20 18 14 19 -18 -34 -39 -18 -18 5]] || || 49.917 || 121/120 126/125 1728/1715 || =13-limit temperaments with badness below 0.04= Listed is the wedgie and the TE badness times 1000 for 64 temperaments with badness less than 0.04. || Rank || Wedgie || Name || Badness || Commas || || 1 || [6 -7 -2 15 -34 -25 -20 3 -76 15 59 -53 49 -88 -173] || Benediction || 15.715 || 225/224 243/242 351/350 441/440 || || 2 || [10 9 7 25 -5 -9 -17 5 -45 -9 27 -45 46 -40 -110] || Myna || 17.125 || 126/125 144/143 176/175 196/195 || || 3 || [1 4 10 18 15 4 13 25 20 12 28 20 16 5 -15] || Meantone || 18.048 || 66/65 81/80 99/98 105/104 || || 4 || [6 -7 -2 15 -3 -25 -20 3 -27 15 59 19 49 -1 -66] || Miraculous || 18.669 || 105/104 144/143 196/195 275/273 || || 5 || [7 -3 8 2 -19 -21 -7 -21 -56 27 15 -33 -22 -83 -73] || Orwell || 19.718 || 99/98 121/120 176/175 275/273 || || 6 || [7 -3 8 2 12 -21 -7 -21 -7 27 15 39 -22 4 34] || Winston || 19.931 || 66/65 99/98 105/104 121/120 || || 7 || [9 5 -3 7 -20 -13 -30 -20 -65 -21 -1 -65 30 -45 -95] || Valentino || 20.665 || 121/120 126/125 176/175 196/195 || || 8 || [1 4 10 -13 15 4 13 -24 20 12 -44 20 -71 5 100] || Meanpop || 20.883 || 81/80 105/104 144/143 196/195 || || 9 || [9 5 -3 7 11 -13 -30 -20 -16 -21 -1 7 30 42 12] || Lupercalia || 21.328 || 66/65 105/104 121/120 126/125 || || 10 || [15 -2 -5 22 -23 -38 -50 -17 -92 -6 58 -46 79 -46 -161] || Hemithirds || 21.738 || 196/195 352/351 1001/1000 1029/1024 || || 11 || [5 -11 -12 -3 -18 -29 -33 -22 -47 3 31 -1 33 -6 -51] || Tritonic || 22.993 || 105/104 121/120 196/195 275/273 || || 12 || [16 2 5 40 -39 -34 -37 8 -121 6 86 -98 95 -128 -283] || Hemiwürschmidt || 23.074 || 243/242 351/350 441/440 3584/3575 || || 13 || [11 13 17 12 10 -5 -4 -19 -25 3 -17 -25 -25 -35 -10] || Nusecond || 23.323 || 66/65 99/98 121/120 126/125 || || 14 || [2 8 -11 5 -1 8 -23 1 -9 -48 -16 -32 52 38 -22] || Mohajira || 23.388 || 66/65 105/104 121/120 512/507 || || 15 || [8 1 18 20 -4 -17 6 4 -36 39 43 -13 -6 -78 -88] || Würschmidt || 23.593 || 99/98 144/143 176/175 275/273 || || 16 || [3 12 -1 -8 14 12 -10 -23 11 -36 -60 -12 -19 43 78] || Mothra || 23.954 || 81/80 99/98 105/104 144/143 || || 17 || [4 16 9 10 29 16 3 2 31 -24 -32 8 -3 48 63] || Agora || 24.522 || 81/80 99/98 105/104 121/120 || || 18 || [23 -1 13 42 -27 -55 -44 -13 -128 33 101 -59 73 -124 -249] || Grendel || 24.839 || 352/351 540/539 625/624 1375/1372 || || 19 || [17 6 15 27 -24 -30 -24 -16 -101 18 42 -78 24 -123 -183] || || 25.204 || 176/175 351/350 540/539 1375/1372 || || 20 || [0 0 0 0 31 0 0 0 49 0 0 72 0 87 107] || Gallium || 25.484 || 81/80 99/98 121/120 126/125 || || 21 || [4 16 9 10 -2 16 3 2 -18 -24 -32 -64 -3 -39 -44] || Squares || 25.514 || 66/65 81/80 99/98 121/120 || || 22 || [1 4 10 18 -16 4 13 25 -29 12 28 -52 16 -82 -122] || Grosstone || 25.899 || 81/80 99/98 126/125 144/143 || || 23 || [13 -10 6 17 -22 -46 -27 -18 -83 42 74 -14 27 -84 -139] || Slender || 25.913 || 225/224 275/273 385/384 1331/1323 || || 24 || [21 -9 -7 37 -57 -63 -70 -14 -168 9 117 -99 128 -134 -334] || || 27.405 || 385/384 441/440 625/624 13720/13689 || || 25 || [2 8 20 5 30 8 26 1 40 24 -16 40 -55 10 85] || || 27.835 || 81/80 105/104 121/120 196/195 || || 26 || [2 8 20 5 -1 8 26 1 -9 24 -16 -32 -55 -77 -22] || Migration || 28.071 || 66/65 121/120 126/125 1215/1183 || || 27 || [22 -5 3 24 -42 -59 -57 -38 -148 21 73 -79 57 -129 -234] || || 28.384 || 352/351 385/384 625/624 1331/1323 || || 28 || [17 6 15 27 7 -30 -24 -16 -52 18 42 -6 24 -36 -76] || || 28.408 || 144/143 176/175 196/195 275/273 || || 29 || [16 2 5 9 -8 -34 -37 -41 -72 6 14 -26 8 -41 -61] || || 28.432 || 121/120 176/175 196/195 275/273 || || 30 || [3 12 -1 23 14 12 -10 26 11 -36 12 -12 68 43 -37] || || 29.207 || 66/65 81/80 105/104 1001/1000 || || 31 || [6 -7 -2 -16 -3 -25 -20 -46 -27 15 -13 19 -38 -1 49] || || 29.452 || 66/65 99/98 105/104 1001/1000 || || 32 || [10 9 7 25 26 -9 -17 5 4 -9 27 27 46 47 -3] || || 29.868 || 66/65 105/104 126/125 540/539 || || 33 || [7 -3 8 33 -19 -21 -7 28 -56 27 87 -33 65 -83 -188] || || 30.237 || 144/143 225/224 351/350 441/440 || || 34 || [16 2 5 40 -8 -34 -37 8 -72 6 86 -26 95 -41 -176] || Hemithir || 31.199 || 144/143 196/195 243/242 625/624 || || 35 || [32 4 10 49 -47 -68 -74 -33 -193 12 100 -124 103 -169 -344] || || 31.732 || 352/351 1001/1000 1716/1715 3025/3024 || || 36 || [10 9 7 -6 -5 -9 -17 -44 -45 -9 -45 -45 -41 -40 5] || || 31.850 || 66/65 99/98 126/125 385/384 || || 37 || [15 -2 -5 22 -54 -38 -50 -17 -141 -6 58 -118 79 -133 -268] || || 31.990 || 351/350 385/384 441/440 3146/3125 || || 38 || [23 -1 13 42 -58 -55 -44 -13 -177 33 101 -131 73 -211 -356] || || 32.359 || 351/350 540/539 1375/1372 5632/5625 || || 39 || [1 4 10 -13 -16 4 13 -24 -29 12 -44 -52 -71 -82 -7] || || 33.007 || 66/65 81/80 126/125 385/384 || || 40 || [12 -14 -4 30 -37 -50 -40 6 -103 30 118 -34 98 -89 -239] || || 33.451 || 225/224 243/242 441/440 1875/1859 || || 41 || [8 1 18 20 27 -17 6 4 13 39 43 59 -6 9 19] || || 34.382 || 66/65 99/98 105/104 243/242 || || 42 || [8 1 -13 20 -4 -17 -43 4 -36 -33 43 -13 101 37 -88] || || 34.458 || 105/104 126/125 144/143 243/242 || || 43 || [3 -19 -1 -8 -17 -37 -10 -23 -38 51 47 31 -19 -44 -29] || || 35.530 || 99/98 105/104 121/120 640/637 || || 44 || [8 1 -13 20 -35 -17 -43 4 -85 -33 43 -85 101 -50 -195] || || 35.585 || 126/125 196/195 385/384 1575/1573 || || 45 || [3 12 -1 -8 -17 12 -10 -23 -38 -36 -60 -84 -19 -44 -29] || || 36.239 || 66/65 81/80 99/98 385/384 || || 46 || [8 1 -13 -11 -4 -17 -43 -45 -36 -33 -29 -13 14 37 27] || || 36.331 || 66/65 105/104 126/125 512/507 || || 47 || [5 -11 -12 -3 -49 -29 -33 -22 -96 3 31 -73 33 -93 -158] || || 36.533 || 121/120 225/224 351/350 441/440 || || 48 || [10 9 7 -6 26 -9 -17 -44 4 -9 -45 27 -41 47 112] || || 36.656 || 99/98 105/104 126/125 144/143 || || 49 || [3 12 -1 23 -17 12 -10 26 -38 -36 12 -84 68 -44 -144] || || 36.857 || 81/80 144/143 176/175 1029/1024 || || 50 || [22 -5 3 55 -42 -59 -57 11 -148 21 145 -79 144 -129 -349] || || 36.876 || 243/242 441/440 625/624 3584/3575 || || 51 || [5 20 19 28 13 20 16 27 2 -12 -4 -44 13 -34 -59] || || 37.382 || 66/65 81/80 99/98 1001/1000 || || 52 || [4 -15 9 10 -2 -33 3 2 -18 63 75 51 -3 -39 -44] || || 37.408 || 99/98 105/104 144/143 243/242 || || 53 || [13 -10 6 17 -53 -46 -27 -18 -132 42 74 -86 27 -171 -246] || || 37.732 || 225/224 351/350 385/384 1331/1323 || || 54 || [12 17 27 30 25 -1 9 6 -5 15 11 -5 -9 -30 -25] || || 37.849 || 66/65 99/98 126/125 243/242 || || 55 || [0 0 0 31 0 0 0 49 0 0 72 0 87 0 -115] || || 37.885 || 81/80 105/104 196/195 512/507 || || 56 || [13 21 6 17 9 3 -27 -18 -34 -45 -33 -57 27 3 -32] || || 38.116 || 66/65 121/120 343/338 441/440 || || 57 || [10 9 7 25 -36 -9 -17 5 -94 -9 27 -117 46 -127 -217] || || 38.811 || 126/125 176/175 243/242 1573/1568 || || 58 || [7 -3 8 33 12 -21 -7 28 -7 27 87 39 65 4 -81] || || 38.812 || 105/104 196/195 275/273 648/637 || || 59 || [9 5 -3 38 -20 -13 -30 29 -65 -21 71 -65 117 -45 -210] || || 39.221 || 126/125 144/143 196/195 1029/1024 || || 60 || [25 7 2 47 -28 -47 -67 -12 -137 -15 85 -91 125 -86 -271] || || 39.271 || 196/195 352/351 1001/1000 6144/6125 || || 61 || [14 -6 16 35 -38 -42 -14 7 -112 54 102 -66 43 -166 -261] || || 39.531 || 225/224 243/242 351/350 2420/2401 || || 62 || [11 13 17 12 41 -5 -4 -19 24 3 -17 47 -25 52 97] || || 39.576 || 99/98 105/104 121/120 126/125 || || 63 || [11 13 17 43 10 -5 -4 30 -25 3 55 -25 62 -35 -125] || || 39.707 || 126/125 176/175 196/195 648/637 || || 64 || [16 2 5 9 -39 -34 -37 -41 -121 6 14 -98 8 -128 -168] || || 39.907 || 121/120 176/175 351/350 1375/1372 ||
Original HTML content:
<html><head><title>List of 31et rank two temperaments by badness</title></head><body>Below are listed rank-two temperaments supported by the 31et <a class="wiki_link" href="/patent%20val">patent val</a>, below the indicated cutoff in TE badness.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x5-limit temperaments with badness below 0.1"></a><!-- ws:end:WikiTextHeadingRule:0 -->5-limit temperaments with badness below 0.1</h1> Listed is the wedgie and the TE badness times 1000 for four temperaments with <a class="wiki_link" href="/badness">badness</a> less than 0.1.<br /> <table class="wiki_table"> <tr> <td>1<br /> </td> <td><<1 4 4]]<br /> </td> <td>Meantone<br /> </td> <td>7.381<br /> </td> <td>81/80<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<15 -2 -38]]<br /> </td> <td>Luna<br /> </td> <td>20.576<br /> </td> <td>274877906944/274658203125<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<8 1 -17]]<br /> </td> <td>Würschmidt<br /> </td> <td>40.603<br /> </td> <td>393216/390625<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<7 -3 -21]]<br /> </td> <td>Orson<br /> </td> <td>40.807<br /> </td> <td>2109375/2097152<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="x7-limit temperaments with badness below 0.06"></a><!-- ws:end:WikiTextHeadingRule:2 -->7-limit temperaments with badness below 0.06</h1> Listed is the wedgie and the TE badness times 1000 for 19 temperaments with badness less than 0.06.<br /> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Badness<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<22 -5 3 -59 -57 21]]<br /> </td> <td>Tertiaseptal<br /> </td> <td>12.995<br /> </td> <td>2401/2400 65625/65536<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<1 4 10 4 13 12]]<br /> </td> <td>Meantone<br /> </td> <td>13.707<br /> </td> <td>81/80 126/125<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<6 -7 -2 -25 -20 15]]<br /> </td> <td>Miracle<br /> </td> <td>16.742<br /> </td> <td>225/224 1029/1024<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<16 2 5 -34 -37 6]]<br /> </td> <td>Hemiwürschmidt<br /> </td> <td>20.307<br /> </td> <td>2401/2400 3136/3125<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<7 -3 8 -21 -7 27]]<br /> </td> <td>Orwell<br /> </td> <td>20.735<br /> </td> <td>225/224 1728/1715<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<10 9 7 -9 -17 -9]]<br /> </td> <td>Myna<br /> </td> <td>27.044<br /> </td> <td>126/125 1728/1715<br /> </td> </tr> <tr> <td>7<br /> </td> <td><<9 5 -3 -13 -30 -21]]<br /> </td> <td>Valentine<br /> </td> <td>31.056<br /> </td> <td>126/125 1029/1024<br /> </td> </tr> <tr> <td>8<br /> </td> <td><<38 -3 8 -93 -94 27]]<br /> </td> <td>Quasiorwell<br /> </td> <td>35.832<br /> </td> <td>2401/2400 29360128/29296875<br /> </td> </tr> <tr> <td>9<br /> </td> <td><<3 12 -1 12 -10 -36]]<br /> </td> <td>Mothra/Cynder<br /> </td> <td>37.146<br /> </td> <td>81/80 1029/1024<br /> </td> </tr> <tr> <td>10<br /> </td> <td><<15 -2 -5 -38 -50 -6]]<br /> </td> <td>Hemithirds<br /> </td> <td>44.284<br /> </td> <td>1029/1024 3136/3125<br /> </td> </tr> <tr> <td>11<br /> </td> <td><<60 -8 11 -152 -151 48]]<br /> </td> <td>Subneutral<br /> </td> <td>45.792<br /> </td> <td>2401/2400 274877906944/274658203125<br /> </td> </tr> <tr> <td>12<br /> </td> <td><<4 16 9 16 3 -24]]<br /> </td> <td>Squares<br /> </td> <td>45.993<br /> </td> <td>81/80 2401/2400<br /> </td> </tr> <tr> <td>13<br /> </td> <td><<5 -11 -12 -29 -33 3]]<br /> </td> <td>Tritonic<br /> </td> <td>47.578<br /> </td> <td>225/224 50421/50000<br /> </td> </tr> <tr> <td>14<br /> </td> <td><<11 13 17 -5 -4 3]]<br /> </td> <td>Nusecond<br /> </td> <td>50.389<br /> </td> <td>126/125 2430/2401<br /> </td> </tr> <tr> <td>15<br /> </td> <td><<17 6 15 -30 -24 18]]<br /> </td> <td>Semisept<br /> </td> <td>50.472<br /> </td> <td>1728/1715 3136/3125<br /> </td> </tr> <tr> <td>16<br /> </td> <td><<8 1 18 -17 6 39]]<br /> </td> <td>Würschmidt<br /> </td> <td>50.776<br /> </td> <td>225/224 8748/8575<br /> </td> </tr> <tr> <td>17<br /> </td> <td><<23 -1 13 -55 -44 33]]<br /> </td> <td>Grendel<br /> </td> <td>51.834<br /> </td> <td>6144/6125 16875/16807<br /> </td> </tr> <tr> <td>18<br /> </td> <td><<2 8 -11 8 -23 -48]]<br /> </td> <td>Mohajira<br /> </td> <td>55.714<br /> </td> <td>81/80 6144/6125<br /> </td> </tr> <tr> <td>19<br /> </td> <td><<13 -10 6 -46 -27 42]]<br /> </td> <td>Slender<br /> </td> <td>56.934<br /> </td> <td>225/224 589824/588245<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="x11-limit temperaments with badness below 0.05"></a><!-- ws:end:WikiTextHeadingRule:4 -->11-limit temperaments with badness below 0.05</h1> Listed is the wedgie and the TE badness times 1000 for 68 temperaments with badness less than 0.05.<br /> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Badness<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td><<6 -7 -2 15 -25 -20 3 15 59 49]]<br /> </td> <td>Miracle<br /> </td> <td>10.684<br /> </td> <td>225/224 243/242 441/440<br /> </td> </tr> <tr> <td>2<br /> </td> <td><<7 -3 8 2 -21 -7 -21 27 15 -22]]<br /> </td> <td>Orwell<br /> </td> <td>15.231<br /> </td> <td>99/98 121/120 176/175<br /> </td> </tr> <tr> <td>3<br /> </td> <td><<44 -10 6 79 -118 -114 -27 42 218 201]]<br /> </td> <td>Hemitert<br /> </td> <td>15.633<br /> </td> <td>2401/2400 3025/3024 65625/65536<br /> </td> </tr> <tr> <td>4<br /> </td> <td><<9 5 -3 7 -13 -30 -20 -21 -1 30]]<br /> </td> <td>Valentine<br /> </td> <td>16.687<br /> </td> <td>121/120 126/125 176/175<br /> </td> </tr> <tr> <td>5<br /> </td> <td><<10 9 7 25 -9 -17 5 -9 27 46]]<br /> </td> <td>Myna<br /> </td> <td>16.842<br /> </td> <td>126/125 176/175 243/242<br /> </td> </tr> <tr> <td>6<br /> </td> <td><<1 4 10 18 4 13 25 12 28 16]]<br /> </td> <td>Meantone<br /> </td> <td>17.027<br /> </td> <td>81/80 99/98 126/125<br /> </td> </tr> <tr> <td>7<br /> </td> <td><<38 -3 8 64 -93 -94 -30 27 159 152]]<br /> </td> <td>Quasiorwell<br /> </td> <td>17.540<br /> </td> <td>2401/2400 3025/3024 5632/5625<br /> </td> </tr> <tr> <td>8<br /> </td> <td><<15 -2 -5 22 -38 -50 -17 -6 58 79]]<br /> </td> <td>Hemithirds<br /> </td> <td>19.003<br /> </td> <td>385/384 441/440 3136/3125<br /> </td> </tr> <tr> <td>9<br /> </td> <td><<23 -1 13 42 -55 -44 -13 33 101 73]]<br /> </td> <td>Grendel<br /> </td> <td>19.845<br /> </td> <td>540/539 1375/1372 5632/5625<br /> </td> </tr> <tr> <td>10<br /> </td> <td><<16 2 5 40 -34 -37 8 6 86 95]]<br /> </td> <td>Hemiwürschmidt<br /> </td> <td>21.069<br /> </td> <td>243/242 441/440 3136/3125<br /> </td> </tr> <tr> <td>11<br /> </td> <td><<1 4 10 -13 4 13 -24 12 -44 -71]]<br /> </td> <td>Meanpop<br /> </td> <td>21.543<br /> </td> <td>81/80 126/125 540/539<br /> </td> </tr> <tr> <td>12<br /> </td> <td><<4 16 9 10 16 3 2 -24 -32 -3]]<br /> </td> <td>Squares<br /> </td> <td>21.636<br /> </td> <td>81/80 99/98 121/120<br /> </td> </tr> <tr> <td>13<br /> </td> <td><<17 6 15 27 -30 -24 -16 18 42 24]]<br /> </td> <td>Semisept<br /> </td> <td>22.476<br /> </td> <td>176/175 540/539 1331/1323<br /> </td> </tr> <tr> <td>14<br /> </td> <td><<5 -11 -12 -3 -29 -33 -22 3 31 33]]<br /> </td> <td>Tritonic<br /> </td> <td>23.659<br /> </td> <td>121/120 225/224 441/440<br /> </td> </tr> <tr> <td>15<br /> </td> <td><<8 1 18 20 -17 6 4 39 43 -6]]<br /> </td> <td>Würschmidt<br /> </td> <td>24.413<br /> </td> <td>99/98 176/175 243/242<br /> </td> </tr> <tr> <td>16<br /> </td> <td><<13 -10 6 17 -46 -27 -18 42 74 27]]<br /> </td> <td>Slender<br /> </td> <td>25.342<br /> </td> <td>225/224 385/384 1331/1323<br /> </td> </tr> <tr> <td>17<br /> </td> <td><<2 8 20 5 8 26 1 24 -16 -55]]<br /> </td> <td>Migration<br /> </td> <td>25.516<br /> </td> <td>81/80 121/120 126/125<br /> </td> </tr> <tr> <td>18<br /> </td> <td><<11 13 17 12 -5 -4 -19 3 -17 -25]]<br /> </td> <td>Nusecond<br /> </td> <td>25.621<br /> </td> <td>99/98 121/120 126/125<br /> </td> </tr> <tr> <td>19<br /> </td> <td><<3 12 -1 -8 12 -10 -23 -36 -60 -19]]<br /> </td> <td>Mothra<br /> </td> <td>25.642<br /> </td> <td>81/80 99/98 385/384<br /> </td> </tr> <tr> <td>20<br /> </td> <td><<2 8 -11 5 8 -23 1 -48 -16 52]]<br /> </td> <td>Mohajira<br /> </td> <td>26.064<br /> </td> <td>81/80 121/120 176/175<br /> </td> </tr> <tr> <td>21<br /> </td> <td><<29 -8 11 57 -80 -64 -10 48 160 122]]<br /> </td> <td>Eris<br /> </td> <td>27.621<br /> </td> <td>540/539 1375/1372 65625/65536<br /> </td> </tr> <tr> <td>22<br /> </td> <td><<16 2 5 9 -34 -37 -41 6 14 8]]<br /> </td> <td>Hemiwur<br /> </td> <td>29.270<br /> </td> <td>121/120 176/175 1375/1372<br /> </td> </tr> <tr> <td>23<br /> </td> <td><<21 -9 -7 37 -63 -70 -14 9 117 128]]<br /> </td> <td>Triwell<br /> </td> <td>29.807<br /> </td> <td>385/384 441/440 456533/455625<br /> </td> </tr> <tr> <td>24<br /> </td> <td><<22 -5 3 24 -59 -57 -38 21 73 57]]<br /> </td> <td>Tertia<br /> </td> <td>30.171<br /> </td> <td>385/384 1331/1323 1375/1372<br /> </td> </tr> <tr> <td>25<br /> </td> <td><<82 -13 14 143 -211 -208 -57 69 377 353]]<br /> </td> <td><br /> </td> <td>30.609<br /> </td> <td>2401/2400 3025/3024 369140625/369098752<br /> </td> </tr> <tr> <td>26<br /> </td> <td><<3 12 -1 23 12 -10 26 -36 12 68]]<br /> </td> <td><br /> </td> <td>31.334<br /> </td> <td>81/80 540/539 1029/1024<br /> </td> </tr> <tr> <td>27<br /> </td> <td><<7 -3 8 33 -21 -7 28 27 87 65]]<br /> </td> <td><br /> </td> <td>31.438<br /> </td> <td>225/224 441/440 1728/1715<br /> </td> </tr> <tr> <td>28<br /> </td> <td><<67 -11 19 121 -173 -158 -40 75 319 274]]<br /> </td> <td><br /> </td> <td>32.121<br /> </td> <td>3025/3024 180224/180075 703125/702464<br /> </td> </tr> <tr> <td>29<br /> </td> <td><<6 -7 -2 -16 -25 -20 -46 15 -13 -38]]<br /> </td> <td><br /> </td> <td>32.946<br /> </td> <td>99/98 176/175 1029/1024<br /> </td> </tr> <tr> <td>30<br /> </td> <td><<10 9 7 -6 -9 -17 -44 -9 -45 -41]]<br /> </td> <td><br /> </td> <td>33.434<br /> </td> <td>99/98 126/125 385/384<br /> </td> </tr> <tr> <td>31<br /> </td> <td><<8 1 -13 20 -17 -43 4 -33 43 101]]<br /> </td> <td><br /> </td> <td>33.436<br /> </td> <td>126/125 243/242 385/384<br /> </td> </tr> <tr> <td>32<br /> </td> <td><<32 4 10 49 -68 -74 -33 12 100 103]]<br /> </td> <td><br /> </td> <td>34.814<br /> </td> <td>2401/2400 3025/3024 3136/3125<br /> </td> </tr> <tr> <td>33<br /> </td> <td><<22 -5 3 55 -59 -57 11 21 145 144]]<br /> </td> <td><br /> </td> <td>35.576<br /> </td> <td>243/242 441/440 703125/702464<br /> </td> </tr> <tr> <td>34<br /> </td> <td><<28 -12 1 39 -84 -77 -35 36 132 106]]<br /> </td> <td><br /> </td> <td>36.493<br /> </td> <td>385/384 1375/1372 14641/14580<br /> </td> </tr> <tr> <td>35<br /> </td> <td><<14 -6 16 35 -42 -14 7 54 102 43]]<br /> </td> <td><br /> </td> <td>38.377<br /> </td> <td>225/224 243/242 2420/2401<br /> </td> </tr> <tr> <td>36<br /> </td> <td><<25 7 2 47 -47 -67 -12 -15 85 125]]<br /> </td> <td><br /> </td> <td>39.162<br /> </td> <td>441/440 3388/3375 6144/6125<br /> </td> </tr> <tr> <td>37<br /> </td> <td><<4 -15 9 10 -33 3 2 63 75 -3]]<br /> </td> <td><br /> </td> <td>39.595<br /> </td> <td>99/98 243/242 385/384<br /> </td> </tr> <tr> <td>38<br /> </td> <td><<31 0 0 62 -72 -87 -9 0 144 174]]<br /> </td> <td><br /> </td> <td>39.9210<br /> </td> <td>441/440 3136/3125 41503/41472<br /> </td> </tr> <tr> <td>39<br /> </td> <td><<3 -19 -1 -8 -37 -10 -23 51 47 -19]]<br /> </td> <td><br /> </td> <td>40.217<br /> </td> <td>99/98 121/120 1029/1024<br /> </td> </tr> <tr> <td>40<br /> </td> <td><<19 14 4 32 -22 -47 -15 -30 26 76]]<br /> </td> <td><br /> </td> <td>40.539<br /> </td> <td>126/125 176/175 14641/14580<br /> </td> </tr> <tr> <td>41<br /> </td> <td><<54 -1 13 104 -127 -131 -22 33 245 247]]<br /> </td> <td><br /> </td> <td>41.496<br /> </td> <td>2401/2400 5632/5625 46656/46585<br /> </td> </tr> <tr> <td>42<br /> </td> <td><<8 1 -13 -11 -17 -43 -45 -33 -29 14]]<br /> </td> <td><br /> </td> <td>41.680<br /> </td> <td>126/125 176/175 14641/14406<br /> </td> </tr> <tr> <td>43<br /> </td> <td><<9 5 -3 38 -13 -30 29 -21 71 117]]<br /> </td> <td><br /> </td> <td>42.204<br /> </td> <td>126/125 540/539 1029/1024<br /> </td> </tr> <tr> <td>44<br /> </td> <td><<12 -14 -4 -1 -50 -40 -43 30 46 11]]<br /> </td> <td><br /> </td> <td>42.687<br /> </td> <td>121/120 225/224 1029/1024<br /> </td> </tr> <tr> <td>45<br /> </td> <td><<12 17 27 30 -1 9 6 15 11 -9]]<br /> </td> <td><br /> </td> <td>42.719<br /> </td> <td>99/98 126/125 243/242<br /> </td> </tr> <tr> <td>46<br /> </td> <td><<5 20 19 28 20 16 27 -12 -4 13]]<br /> </td> <td><br /> </td> <td>42.869<br /> </td> <td>81/80 99/98 2541/2500<br /> </td> </tr> <tr> <td>47<br /> </td> <td><<0 0 0 31 0 0 49 0 72 87]]<br /> </td> <td><br /> </td> <td>42.959<br /> </td> <td>81/80 126/125 1029/1024<br /> </td> </tr> <tr> <td>48<br /> </td> <td><<11 -18 -14 12 -54 -53 -19 18 90 82]]<br /> </td> <td><br /> </td> <td>44.005<br /> </td> <td>225/224 441/440 9317/9216<br /> </td> </tr> <tr> <td>49<br /> </td> <td><<11 13 17 43 -5 -4 30 3 55 62]]<br /> </td> <td><br /> </td> <td>44.041<br /> </td> <td>126/125 176/175 2430/2401<br /> </td> </tr> <tr> <td>50<br /> </td> <td><<13 21 6 17 3 -27 -18 -45 -33 27]]<br /> </td> <td><br /> </td> <td>44.186<br /> </td> <td>121/120 441/440 891/875<br /> </td> </tr> <tr> <td>51<br /> </td> <td><<26 11 12 34 -43 -54 -36 -3 41 54]]<br /> </td> <td><br /> </td> <td>44.660<br /> </td> <td>176/175 1331/1323 2401/2400<br /> </td> </tr> <tr> <td>52<br /> </td> <td><<61 -4 21 106 -148 -138 -43 60 260 225]]<br /> </td> <td><br /> </td> <td>44.729<br /> </td> <td>3025/3024 5632/5625 825000/823543<br /> </td> </tr> <tr> <td>53<br /> </td> <td><<60 -8 11 119 -152 -151 -19 48 304 296]]<br /> </td> <td><br /> </td> <td>44.888<br /> </td> <td>2401/2400 46656/46585 172032/171875<br /> </td> </tr> <tr> <td>54<br /> </td> <td><<19 -17 4 32 -71 -47 -15 57 133 76]]<br /> </td> <td><br /> </td> <td>45.168<br /> </td> <td>225/224 385/384 585640/583443<br /> </td> </tr> <tr> <td>55<br /> </td> <td><<5 -11 -12 28 -29 -33 27 3 103 120]]<br /> </td> <td><br /> </td> <td>45.456<br /> </td> <td>225/224 385/384 27783/27500<br /> </td> </tr> <tr> <td>56<br /> </td> <td><<5 20 19 -3 20 16 -22 -12 -76 -74]]<br /> </td> <td><br /> </td> <td>45.466<br /> </td> <td>81/80 540/539 1375/1372<br /> </td> </tr> <tr> <td>57<br /> </td> <td><<1 4 -21 -13 4 -36 -24 -60 -44 36]]<br /> </td> <td><br /> </td> <td>45.509<br /> </td> <td>81/80 176/175 1331/1323<br /> </td> </tr> <tr> <td>58<br /> </td> <td><<18 10 25 45 -26 -11 9 30 70 40]]<br /> </td> <td><br /> </td> <td>45.7950<br /> </td> <td>176/175 243/242 1375/1372<br /> </td> </tr> <tr> <td>59<br /> </td> <td><<39 1 18 82 -89 -81 -5 39 187 168]]<br /> </td> <td><br /> </td> <td>45.928<br /> </td> <td>540/539 5632/5625 151263/151250<br /> </td> </tr> <tr> <td>60<br /> </td> <td><<2 -23 -11 5 -41 -23 1 39 91 52]]<br /> </td> <td><br /> </td> <td>46.181<br /> </td> <td>243/242 441/440 1815/1792<br /> </td> </tr> <tr> <td>61<br /> </td> <td><<4 -15 -22 10 -33 -46 2 -9 75 104]]<br /> </td> <td><br /> </td> <td>46.462<br /> </td> <td>225/224 243/242 1617/1600<br /> </td> </tr> <tr> <td>62<br /> </td> <td><<9 5 28 7 -13 19 -20 51 -1 -77]]<br /> </td> <td><br /> </td> <td>47.885<br /> </td> <td>121/120 225/224 891/875<br /> </td> </tr> <tr> <td>63<br /> </td> <td><<33 8 20 67 -64 -61 -8 24 128 119]]<br /> </td> <td><br /> </td> <td>48.088<br /> </td> <td>540/539 3136/3125 15488/15435<br /> </td> </tr> <tr> <td>64<br /> </td> <td><<14 -6 -15 4 -42 -63 -42 -18 30 63]]<br /> </td> <td><br /> </td> <td>48.150<br /> </td> <td>121/120 441/440 3136/3125<br /> </td> </tr> <tr> <td>65<br /> </td> <td><<8 1 18 -11 -17 6 -45 39 -29 -93]]<br /> </td> <td><br /> </td> <td>48.186<br /> </td> <td>225/224 385/384 891/875<br /> </td> </tr> <tr> <td>66<br /> </td> <td><<50 -17 4 94 -143 -134 -24 57 277 250]]<br /> </td> <td><br /> </td> <td>48.798<br /> </td> <td>2401/2400 3025/3024 1265625/1261568<br /> </td> </tr> <tr> <td>67<br /> </td> <td><<7 -3 -23 2 -21 -56 -21 -45 15 85]]<br /> </td> <td><br /> </td> <td>49.572<br /> </td> <td>121/120 126/125 2079/2048<br /> </td> </tr> <tr> <td>68<br /> </td> <td><<20 18 14 19 -18 -34 -39 -18 -18 5]]<br /> </td> <td><br /> </td> <td>49.917<br /> </td> <td>121/120 126/125 1728/1715<br /> </td> </tr> </table> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="x13-limit temperaments with badness below 0.04"></a><!-- ws:end:WikiTextHeadingRule:6 -->13-limit temperaments with badness below 0.04</h1> Listed is the wedgie and the TE badness times 1000 for 64 temperaments with badness less than 0.04.<br /> <table class="wiki_table"> <tr> <td>Rank<br /> </td> <td>Wedgie<br /> </td> <td>Name<br /> </td> <td>Badness<br /> </td> <td>Commas<br /> </td> </tr> <tr> <td>1<br /> </td> <td>[6 -7 -2 15 -34 -25 -20 3 -76 15 59 -53 49 -88 -173]<br /> </td> <td>Benediction<br /> </td> <td>15.715<br /> </td> <td>225/224 243/242 351/350 441/440<br /> </td> </tr> <tr> <td>2<br /> </td> <td>[10 9 7 25 -5 -9 -17 5 -45 -9 27 -45 46 -40 -110]<br /> </td> <td>Myna<br /> </td> <td>17.125<br /> </td> <td>126/125 144/143 176/175 196/195<br /> </td> </tr> <tr> <td>3<br /> </td> <td>[1 4 10 18 15 4 13 25 20 12 28 20 16 5 -15]<br /> </td> <td>Meantone<br /> </td> <td>18.048<br /> </td> <td>66/65 81/80 99/98 105/104<br /> </td> </tr> <tr> <td>4<br /> </td> <td>[6 -7 -2 15 -3 -25 -20 3 -27 15 59 19 49 -1 -66]<br /> </td> <td>Miraculous<br /> </td> <td>18.669<br /> </td> <td>105/104 144/143 196/195 275/273<br /> </td> </tr> <tr> <td>5<br /> </td> <td>[7 -3 8 2 -19 -21 -7 -21 -56 27 15 -33 -22 -83 -73]<br /> </td> <td>Orwell<br /> </td> <td>19.718<br /> </td> <td>99/98 121/120 176/175 275/273<br /> </td> </tr> <tr> <td>6<br /> </td> <td>[7 -3 8 2 12 -21 -7 -21 -7 27 15 39 -22 4 34]<br /> </td> <td>Winston<br /> </td> <td>19.931<br /> </td> <td>66/65 99/98 105/104 121/120<br /> </td> </tr> <tr> <td>7<br /> </td> <td>[9 5 -3 7 -20 -13 -30 -20 -65 -21 -1 -65 30 -45 -95]<br /> </td> <td>Valentino<br /> </td> <td>20.665<br /> </td> <td>121/120 126/125 176/175 196/195<br /> </td> </tr> <tr> <td>8<br /> </td> <td>[1 4 10 -13 15 4 13 -24 20 12 -44 20 -71 5 100]<br /> </td> <td>Meanpop<br /> </td> <td>20.883<br /> </td> <td>81/80 105/104 144/143 196/195<br /> </td> </tr> <tr> <td>9<br /> </td> <td>[9 5 -3 7 11 -13 -30 -20 -16 -21 -1 7 30 42 12]<br /> </td> <td>Lupercalia<br /> </td> <td>21.328<br /> </td> <td>66/65 105/104 121/120 126/125<br /> </td> </tr> <tr> <td>10<br /> </td> <td>[15 -2 -5 22 -23 -38 -50 -17 -92 -6 58 -46 79 -46 -161]<br /> </td> <td>Hemithirds<br /> </td> <td>21.738<br /> </td> <td>196/195 352/351 1001/1000 1029/1024<br /> </td> </tr> <tr> <td>11<br /> </td> <td>[5 -11 -12 -3 -18 -29 -33 -22 -47 3 31 -1 33 -6 -51]<br /> </td> <td>Tritonic<br /> </td> <td>22.993<br /> </td> <td>105/104 121/120 196/195 275/273<br /> </td> </tr> <tr> <td>12<br /> </td> <td>[16 2 5 40 -39 -34 -37 8 -121 6 86 -98 95 -128 -283]<br /> </td> <td>Hemiwürschmidt<br /> </td> <td>23.074<br /> </td> <td>243/242 351/350 441/440 3584/3575<br /> </td> </tr> <tr> <td>13<br /> </td> <td>[11 13 17 12 10 -5 -4 -19 -25 3 -17 -25 -25 -35 -10]<br /> </td> <td>Nusecond<br /> </td> <td>23.323<br /> </td> <td>66/65 99/98 121/120 126/125<br /> </td> </tr> <tr> <td>14<br /> </td> <td>[2 8 -11 5 -1 8 -23 1 -9 -48 -16 -32 52 38 -22]<br /> </td> <td>Mohajira<br /> </td> <td>23.388<br /> </td> <td>66/65 105/104 121/120 512/507<br /> </td> </tr> <tr> <td>15<br /> </td> <td>[8 1 18 20 -4 -17 6 4 -36 39 43 -13 -6 -78 -88]<br /> </td> <td>Würschmidt<br /> </td> <td>23.593<br /> </td> <td>99/98 144/143 176/175 275/273<br /> </td> </tr> <tr> <td>16<br /> </td> <td>[3 12 -1 -8 14 12 -10 -23 11 -36 -60 -12 -19 43 78]<br /> </td> <td>Mothra<br /> </td> <td>23.954<br /> </td> <td>81/80 99/98 105/104 144/143<br /> </td> </tr> <tr> <td>17<br /> </td> <td>[4 16 9 10 29 16 3 2 31 -24 -32 8 -3 48 63]<br /> </td> <td>Agora<br /> </td> <td>24.522<br /> </td> <td>81/80 99/98 105/104 121/120<br /> </td> </tr> <tr> <td>18<br /> </td> <td>[23 -1 13 42 -27 -55 -44 -13 -128 33 101 -59 73 -124 -249]<br /> </td> <td>Grendel<br /> </td> <td>24.839<br /> </td> <td>352/351 540/539 625/624 1375/1372<br /> </td> </tr> <tr> <td>19<br /> </td> <td>[17 6 15 27 -24 -30 -24 -16 -101 18 42 -78 24 -123 -183]<br /> </td> <td><br /> </td> <td>25.204<br /> </td> <td>176/175 351/350 540/539 1375/1372<br /> </td> </tr> <tr> <td>20<br /> </td> <td>[0 0 0 0 31 0 0 0 49 0 0 72 0 87 107]<br /> </td> <td>Gallium<br /> </td> <td>25.484<br /> </td> <td>81/80 99/98 121/120 126/125<br /> </td> </tr> <tr> <td>21<br /> </td> <td>[4 16 9 10 -2 16 3 2 -18 -24 -32 -64 -3 -39 -44]<br /> </td> <td>Squares<br /> </td> <td>25.514<br /> </td> <td>66/65 81/80 99/98 121/120<br /> </td> </tr> <tr> <td>22<br /> </td> <td>[1 4 10 18 -16 4 13 25 -29 12 28 -52 16 -82 -122]<br /> </td> <td>Grosstone<br /> </td> <td>25.899<br /> </td> <td>81/80 99/98 126/125 144/143<br /> </td> </tr> <tr> <td>23<br /> </td> <td>[13 -10 6 17 -22 -46 -27 -18 -83 42 74 -14 27 -84 -139]<br /> </td> <td>Slender<br /> </td> <td>25.913<br /> </td> <td>225/224 275/273 385/384 1331/1323<br /> </td> </tr> <tr> <td>24<br /> </td> <td>[21 -9 -7 37 -57 -63 -70 -14 -168 9 117 -99 128 -134 -334]<br /> </td> <td><br /> </td> <td>27.405<br /> </td> <td>385/384 441/440 625/624 13720/13689<br /> </td> </tr> <tr> <td>25<br /> </td> <td>[2 8 20 5 30 8 26 1 40 24 -16 40 -55 10 85]<br /> </td> <td><br /> </td> <td>27.835<br /> </td> <td>81/80 105/104 121/120 196/195<br /> </td> </tr> <tr> <td>26<br /> </td> <td>[2 8 20 5 -1 8 26 1 -9 24 -16 -32 -55 -77 -22]<br /> </td> <td>Migration<br /> </td> <td>28.071<br /> </td> <td>66/65 121/120 126/125 1215/1183<br /> </td> </tr> <tr> <td>27<br /> </td> <td>[22 -5 3 24 -42 -59 -57 -38 -148 21 73 -79 57 -129 -234]<br /> </td> <td><br /> </td> <td>28.384<br /> </td> <td>352/351 385/384 625/624 1331/1323<br /> </td> </tr> <tr> <td>28<br /> </td> <td>[17 6 15 27 7 -30 -24 -16 -52 18 42 -6 24 -36 -76]<br /> </td> <td><br /> </td> <td>28.408<br /> </td> <td>144/143 176/175 196/195 275/273<br /> </td> </tr> <tr> <td>29<br /> </td> <td>[16 2 5 9 -8 -34 -37 -41 -72 6 14 -26 8 -41 -61]<br /> </td> <td><br /> </td> <td>28.432<br /> </td> <td>121/120 176/175 196/195 275/273<br /> </td> </tr> <tr> <td>30<br /> </td> <td>[3 12 -1 23 14 12 -10 26 11 -36 12 -12 68 43 -37]<br /> </td> <td><br /> </td> <td>29.207<br /> </td> <td>66/65 81/80 105/104 1001/1000<br /> </td> </tr> <tr> <td>31<br /> </td> <td>[6 -7 -2 -16 -3 -25 -20 -46 -27 15 -13 19 -38 -1 49]<br /> </td> <td><br /> </td> <td>29.452<br /> </td> <td>66/65 99/98 105/104 1001/1000<br /> </td> </tr> <tr> <td>32<br /> </td> <td>[10 9 7 25 26 -9 -17 5 4 -9 27 27 46 47 -3]<br /> </td> <td><br /> </td> <td>29.868<br /> </td> <td>66/65 105/104 126/125 540/539<br /> </td> </tr> <tr> <td>33<br /> </td> <td>[7 -3 8 33 -19 -21 -7 28 -56 27 87 -33 65 -83 -188]<br /> </td> <td><br /> </td> <td>30.237<br /> </td> <td>144/143 225/224 351/350 441/440<br /> </td> </tr> <tr> <td>34<br /> </td> <td>[16 2 5 40 -8 -34 -37 8 -72 6 86 -26 95 -41 -176]<br /> </td> <td>Hemithir<br /> </td> <td>31.199<br /> </td> <td>144/143 196/195 243/242 625/624<br /> </td> </tr> <tr> <td>35<br /> </td> <td>[32 4 10 49 -47 -68 -74 -33 -193 12 100 -124 103 -169 -344]<br /> </td> <td><br /> </td> <td>31.732<br /> </td> <td>352/351 1001/1000 1716/1715 3025/3024<br /> </td> </tr> <tr> <td>36<br /> </td> <td>[10 9 7 -6 -5 -9 -17 -44 -45 -9 -45 -45 -41 -40 5]<br /> </td> <td><br /> </td> <td>31.850<br /> </td> <td>66/65 99/98 126/125 385/384<br /> </td> </tr> <tr> <td>37<br /> </td> <td>[15 -2 -5 22 -54 -38 -50 -17 -141 -6 58 -118 79 -133 -268]<br /> </td> <td><br /> </td> <td>31.990<br /> </td> <td>351/350 385/384 441/440 3146/3125<br /> </td> </tr> <tr> <td>38<br /> </td> <td>[23 -1 13 42 -58 -55 -44 -13 -177 33 101 -131 73 -211 -356]<br /> </td> <td><br /> </td> <td>32.359<br /> </td> <td>351/350 540/539 1375/1372 5632/5625<br /> </td> </tr> <tr> <td>39<br /> </td> <td>[1 4 10 -13 -16 4 13 -24 -29 12 -44 -52 -71 -82 -7]<br /> </td> <td><br /> </td> <td>33.007<br /> </td> <td>66/65 81/80 126/125 385/384<br /> </td> </tr> <tr> <td>40<br /> </td> <td>[12 -14 -4 30 -37 -50 -40 6 -103 30 118 -34 98 -89 -239]<br /> </td> <td><br /> </td> <td>33.451<br /> </td> <td>225/224 243/242 441/440 1875/1859<br /> </td> </tr> <tr> <td>41<br /> </td> <td>[8 1 18 20 27 -17 6 4 13 39 43 59 -6 9 19]<br /> </td> <td><br /> </td> <td>34.382<br /> </td> <td>66/65 99/98 105/104 243/242<br /> </td> </tr> <tr> <td>42<br /> </td> <td>[8 1 -13 20 -4 -17 -43 4 -36 -33 43 -13 101 37 -88]<br /> </td> <td><br /> </td> <td>34.458<br /> </td> <td>105/104 126/125 144/143 243/242<br /> </td> </tr> <tr> <td>43<br /> </td> <td>[3 -19 -1 -8 -17 -37 -10 -23 -38 51 47 31 -19 -44 -29]<br /> </td> <td><br /> </td> <td>35.530<br /> </td> <td>99/98 105/104 121/120 640/637<br /> </td> </tr> <tr> <td>44<br /> </td> <td>[8 1 -13 20 -35 -17 -43 4 -85 -33 43 -85 101 -50 -195]<br /> </td> <td><br /> </td> <td>35.585<br /> </td> <td>126/125 196/195 385/384 1575/1573<br /> </td> </tr> <tr> <td>45<br /> </td> <td>[3 12 -1 -8 -17 12 -10 -23 -38 -36 -60 -84 -19 -44 -29]<br /> </td> <td><br /> </td> <td>36.239<br /> </td> <td>66/65 81/80 99/98 385/384<br /> </td> </tr> <tr> <td>46<br /> </td> <td>[8 1 -13 -11 -4 -17 -43 -45 -36 -33 -29 -13 14 37 27]<br /> </td> <td><br /> </td> <td>36.331<br /> </td> <td>66/65 105/104 126/125 512/507<br /> </td> </tr> <tr> <td>47<br /> </td> <td>[5 -11 -12 -3 -49 -29 -33 -22 -96 3 31 -73 33 -93 -158]<br /> </td> <td><br /> </td> <td>36.533<br /> </td> <td>121/120 225/224 351/350 441/440<br /> </td> </tr> <tr> <td>48<br /> </td> <td>[10 9 7 -6 26 -9 -17 -44 4 -9 -45 27 -41 47 112]<br /> </td> <td><br /> </td> <td>36.656<br /> </td> <td>99/98 105/104 126/125 144/143<br /> </td> </tr> <tr> <td>49<br /> </td> <td>[3 12 -1 23 -17 12 -10 26 -38 -36 12 -84 68 -44 -144]<br /> </td> <td><br /> </td> <td>36.857<br /> </td> <td>81/80 144/143 176/175 1029/1024<br /> </td> </tr> <tr> <td>50<br /> </td> <td>[22 -5 3 55 -42 -59 -57 11 -148 21 145 -79 144 -129 -349]<br /> </td> <td><br /> </td> <td>36.876<br /> </td> <td>243/242 441/440 625/624 3584/3575<br /> </td> </tr> <tr> <td>51<br /> </td> <td>[5 20 19 28 13 20 16 27 2 -12 -4 -44 13 -34 -59]<br /> </td> <td><br /> </td> <td>37.382<br /> </td> <td>66/65 81/80 99/98 1001/1000<br /> </td> </tr> <tr> <td>52<br /> </td> <td>[4 -15 9 10 -2 -33 3 2 -18 63 75 51 -3 -39 -44]<br /> </td> <td><br /> </td> <td>37.408<br /> </td> <td>99/98 105/104 144/143 243/242<br /> </td> </tr> <tr> <td>53<br /> </td> <td>[13 -10 6 17 -53 -46 -27 -18 -132 42 74 -86 27 -171 -246]<br /> </td> <td><br /> </td> <td>37.732<br /> </td> <td>225/224 351/350 385/384 1331/1323<br /> </td> </tr> <tr> <td>54<br /> </td> <td>[12 17 27 30 25 -1 9 6 -5 15 11 -5 -9 -30 -25]<br /> </td> <td><br /> </td> <td>37.849<br /> </td> <td>66/65 99/98 126/125 243/242<br /> </td> </tr> <tr> <td>55<br /> </td> <td>[0 0 0 31 0 0 0 49 0 0 72 0 87 0 -115]<br /> </td> <td><br /> </td> <td>37.885<br /> </td> <td>81/80 105/104 196/195 512/507<br /> </td> </tr> <tr> <td>56<br /> </td> <td>[13 21 6 17 9 3 -27 -18 -34 -45 -33 -57 27 3 -32]<br /> </td> <td><br /> </td> <td>38.116<br /> </td> <td>66/65 121/120 343/338 441/440<br /> </td> </tr> <tr> <td>57<br /> </td> <td>[10 9 7 25 -36 -9 -17 5 -94 -9 27 -117 46 -127 -217]<br /> </td> <td><br /> </td> <td>38.811<br /> </td> <td>126/125 176/175 243/242 1573/1568<br /> </td> </tr> <tr> <td>58<br /> </td> <td>[7 -3 8 33 12 -21 -7 28 -7 27 87 39 65 4 -81]<br /> </td> <td><br /> </td> <td>38.812<br /> </td> <td>105/104 196/195 275/273 648/637<br /> </td> </tr> <tr> <td>59<br /> </td> <td>[9 5 -3 38 -20 -13 -30 29 -65 -21 71 -65 117 -45 -210]<br /> </td> <td><br /> </td> <td>39.221<br /> </td> <td>126/125 144/143 196/195 1029/1024<br /> </td> </tr> <tr> <td>60<br /> </td> <td>[25 7 2 47 -28 -47 -67 -12 -137 -15 85 -91 125 -86 -271]<br /> </td> <td><br /> </td> <td>39.271<br /> </td> <td>196/195 352/351 1001/1000 6144/6125<br /> </td> </tr> <tr> <td>61<br /> </td> <td>[14 -6 16 35 -38 -42 -14 7 -112 54 102 -66 43 -166 -261]<br /> </td> <td><br /> </td> <td>39.531<br /> </td> <td>225/224 243/242 351/350 2420/2401<br /> </td> </tr> <tr> <td>62<br /> </td> <td>[11 13 17 12 41 -5 -4 -19 24 3 -17 47 -25 52 97]<br /> </td> <td><br /> </td> <td>39.576<br /> </td> <td>99/98 105/104 121/120 126/125<br /> </td> </tr> <tr> <td>63<br /> </td> <td>[11 13 17 43 10 -5 -4 30 -25 3 55 -25 62 -35 -125]<br /> </td> <td><br /> </td> <td>39.707<br /> </td> <td>126/125 176/175 196/195 648/637<br /> </td> </tr> <tr> <td>64<br /> </td> <td>[16 2 5 9 -39 -34 -37 -41 -121 6 14 -98 8 -128 -168]<br /> </td> <td><br /> </td> <td>39.907<br /> </td> <td>121/120 176/175 351/350 1375/1372<br /> </td> </tr> </table> </body></html>