[math]\displaystyle{
\def\hs{\hspace{-3px}}
\def\lvsp{{}\mkern-5.5mu}{}
\def\rvsp{{}\mkern-2.5mu}{}
\def\llangle{\left\langle\lvsp\left\langle}
\def\lllangle{\left\langle\lvsp\left\langle\lvsp\left\langle}
\def\llllangle{\left\langle\lvsp\left\langle\lvsp\left\langle\lvsp\left\langle}
\def\llbrack{\left[\left[}
\def\lllbrack{\left[\left[\left[}
\def\llllbrack{\left[\left[\left[\left[}
\def\llvert{\left\vert\left\vert}
\def\lllvert{\left\vert\left\vert\left\vert}
\def\llllvert{\left\vert\left\vert\left\vert\left\vert}
\def\rrangle{\right\rangle\rvsp\right\rangle}
\def\rrrangle{\right\rangle\rvsp\right\rangle\rvsp\right\rangle}
\def\rrrrangle{\right\rangle\rvsp\right\rangle\rvsp\right\rangle\rvsp\right\rangle}
\def\rrbrack{\right]\right]}
\def\rrrbrack{\right]\right]\right]}
\def\rrrrbrack{\right]\right]\right]\right]}
\def\rrvert{\right\vert\right\vert}
\def\rrrvert{\right\vert\right\vert\right\vert}
\def\rrrrvert{\right\vert\right\vert\right\vert\right\vert}
}[/math][math]\displaystyle{
\def\val#1{\left\langle\begin{matrix}#1\end{matrix}\right]}
\def\tval#1{\left\langle\begin{matrix}#1\end{matrix}\right\vert}
\def\bival#1{\llangle\begin{matrix}#1\end{matrix}\rrbrack}
\def\bitval#1{\llangle\begin{matrix}#1\end{matrix}\rrvert}
\def\trival#1{\lllangle\begin{matrix}#1\end{matrix}\rrrbrack}
\def\tritval#1{\lllangle\begin{matrix}#1\end{matrix}\rrrvert}
\def\quadval#1{\llllangle\begin{matrix}#1\end{matrix}\rrrrbrack}
\def\quadtval#1{\llllangle\begin{matrix}#1\end{matrix}\rrrrvert}
\def\monzo#1{\left[\begin{matrix}#1\end{matrix}\right\rangle}
\def\tmonzo#1{\left\vert\begin{matrix}#1\end{matrix}\right\rangle}
\def\bimonzo#1{\llbrack\begin{matrix}#1\end{matrix}\rrangle}
\def\bitmonzo#1{\llvert\begin{matrix}#1\end{matrix}\rrangle}
\def\trimonzo#1{\lllbrack\begin{matrix}#1\end{matrix}\rrrangle}
\def\tritmonzo#1{\lllvert\begin{matrix}#1\end{matrix}\rrrangle}
\def\quadmonzo#1{\llllbrack\begin{matrix}#1\end{matrix}\rrrrangle}
\def\quadtmonzo#1{\llllvert\begin{matrix}#1\end{matrix}\rrrrangle}
\def\rbra#1{\left\{\begin{matrix}#1\end{matrix}\right]}
\def\rket#1{\left[\begin{matrix}#1\end{matrix}\right\}}
\def\vmp#1#2{\left\langle\begin{matrix}#1\end{matrix}\,\vert\,\begin{matrix}#2\end{matrix}\right\rangle\vsp}
\def\wmp#1#2{\llangle\begin{matrix}#1\end{matrix}\,\vert\vert\,\begin{matrix}#2\end{matrix}\rrangle}
}[/math]
[math]\displaystyle{
\def\hs{\hspace{-3px}}
\def\lvsp{{}\mkern-5.5mu}{}
\def\rvsp{{}\mkern-2.5mu}{}
\def\llangle{\left\langle\lvsp\left\langle}
\def\lllangle{\left\langle\lvsp\left\langle\lvsp\left\langle}
\def\llllangle{\left\langle\lvsp\left\langle\lvsp\left\langle\lvsp\left\langle}
\def\llbrack{\left[\left[}
\def\lllbrack{\left[\left[\left[}
\def\llllbrack{\left[\left[\left[\left[}
\def\llvert{\left\vert\left\vert}
\def\lllvert{\left\vert\left\vert\left\vert}
\def\llllvert{\left\vert\left\vert\left\vert\left\vert}
\def\rrangle{\right\rangle\rvsp\right\rangle}
\def\rrrangle{\right\rangle\rvsp\right\rangle\rvsp\right\rangle}
\def\rrrrangle{\right\rangle\rvsp\right\rangle\rvsp\right\rangle\rvsp\right\rangle}
\def\rrbrack{\right]\right]}
\def\rrrbrack{\right]\right]\right]}
\def\rrrrbrack{\right]\right]\right]\right]}
\def\rrvert{\right\vert\right\vert}
\def\rrrvert{\right\vert\right\vert\right\vert}
\def\rrrrvert{\right\vert\right\vert\right\vert\right\vert}
}[/math][math]\displaystyle{
\def\val#1{\left\langle\begin{matrix}#1\end{matrix}\right]}
\def\tval#1{\left\langle\begin{matrix}#1\end{matrix}\right\vert}
\def\bival#1{\llangle\begin{matrix}#1\end{matrix}\rrbrack}
\def\bitval#1{\llangle\begin{matrix}#1\end{matrix}\rrvert}
\def\trival#1{\lllangle\begin{matrix}#1\end{matrix}\rrrbrack}
\def\tritval#1{\lllangle\begin{matrix}#1\end{matrix}\rrrvert}
\def\quadval#1{\llllangle\begin{matrix}#1\end{matrix}\rrrrbrack}
\def\quadtval#1{\llllangle\begin{matrix}#1\end{matrix}\rrrrvert}
\def\monzo#1{\left[\begin{matrix}#1\end{matrix}\right\rangle}
\def\tmonzo#1{\left\vert\begin{matrix}#1\end{matrix}\right\rangle}
\def\bimonzo#1{\llbrack\begin{matrix}#1\end{matrix}\rrangle}
\def\bitmonzo#1{\llvert\begin{matrix}#1\end{matrix}\rrangle}
\def\trimonzo#1{\lllbrack\begin{matrix}#1\end{matrix}\rrrangle}
\def\tritmonzo#1{\lllvert\begin{matrix}#1\end{matrix}\rrrangle}
\def\quadmonzo#1{\llllbrack\begin{matrix}#1\end{matrix}\rrrrangle}
\def\quadtmonzo#1{\llllvert\begin{matrix}#1\end{matrix}\rrrrangle}
\def\rbra#1{\left\{\begin{matrix}#1\end{matrix}\right]}
\def\rket#1{\left[\begin{matrix}#1\end{matrix}\right\}}
\def\vmp#1#2{\left\langle\begin{matrix}#1\end{matrix}\,\vert\,\begin{matrix}#2\end{matrix}\right\rangle\vsp}
\def\wmp#1#2{\llangle\begin{matrix}#1\end{matrix}\,\vert\vert\,\begin{matrix}#2\end{matrix}\rrangle}
}[/math]
This template allows LaTeX representations of monzos, vals, and monzo–val products by defining the operators in advance to avoid the need to manually enter brackets.
Usage
This template is mainly used to typeset Monzos and vals, but multimonzos and multivals are also supported up to four dimensions.
Note: You can use {{texmap}}
as a shortcut.
Pre-defined LaTeX control sequences for interval vectors
Operator
|
Example
|
Definition
|
You type
|
You get
|
monzo
|
\monzo{-4 & 4 & -1}
|
[math]\displaystyle{ \monzo{-4 & 4 & -1} }[/math]
|
Monzo
|
tmonzo
|
\tmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \tmonzo{-4 & 4 & -1} }[/math]
|
Monzo (pipe variant)
|
bimonzo
|
\bimonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \bimonzo{-4 & 4 & -1} }[/math]
|
Bimonzo
|
bitmonzo
|
\bitmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \bitmonzo{-4 & 4 & -1} }[/math]
|
Bimonzo (pipe variant)
|
trimonzo
|
\trimonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \trimonzo{-4 & 4 & -1} }[/math]
|
Trimonzo
|
tritmonzo
|
\tritmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \tritmonzo{-4 & 4 & -1} }[/math]
|
Trimonzo (pipe variant)
|
quadmonzo
|
\quadmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \quadmonzo{-4 & 4 & -1} }[/math]
|
Quadmonzo
|
quadtmonzo
|
\quadtmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \quadtmonzo{-4 & 4 & -1} }[/math]
|
Quadmonzo (pipe variant)
|
val
|
\val{12 & 19 & 28}
|
[math]\displaystyle{ \val{12 & 19 & 28} }[/math]
|
Val
|
tval
|
\tval{12 & 19 & 28}
|
[math]\displaystyle{ \tval{12 & 19 & 28} }[/math]
|
Val (pipe variant)
|
bival
|
\bival{12 & 19 & 28}
|
[math]\displaystyle{ \bival{12 & 19 & 28} }[/math]
|
Bival
|
bitval
|
\bitval{12 & 19 & 28}
|
[math]\displaystyle{ \bitval{12 & 19 & 28} }[/math]
|
Bival (pipe variant)
|
trival
|
\trival{12 & 19 & 28}
|
[math]\displaystyle{ \trival{12 & 19 & 28} }[/math]
|
Trival
|
tritval
|
\tritval{12 & 19 & 28}
|
[math]\displaystyle{ \tritval{12 & 19 & 28} }[/math]
|
Trival (pipe variant)
|
quadval
|
\quadval{12 & 19 & 28}
|
[math]\displaystyle{ \quadval{12 & 19 & 28} }[/math]
|
Quadval
|
quadtval
|
\quadtval{12 & 19 & 28}
|
[math]\displaystyle{ \quadtval{12 & 19 & 28} }[/math]
|
Quadval (pipe variant)
|
rbra
|
\rbra{\monzo{1 & 2 & 3} & \monzo{0 & -3 & -5}}
|
[math]\displaystyle{ \rbra{\monzo{1 & 2 & 3} & \monzo{0 & -3 & -5}} }[/math]
|
Dave Keenan and Douglas Blumeyer's variation on extended bra-ket notation
|
rket
|
\rket{\val{1 & 2 & 3} & \val{0 & -3 & -5}}
|
[math]\displaystyle{ \rket{\val{1 & 2 & 3} & \val{0 & -3 & -5}} }[/math]
|
vmp
|
\vmp{12 & 19 & 28}{-4 & 4 & -1}
|
[math]\displaystyle{ \vmp{12 & 19 & 28}{-4 & 4 & -1} }[/math]
|
Dot product of val and monzo
|
wmp
|
\wmp{12 & 19 & 28}{-4 & 4 & -1}
|
[math]\displaystyle{ \wmp{12 & 19 & 28}{-4 & 4 & -1} }[/math]
|
Dot product of bival and bimonzo
|
See also