This is a working out sandbox page, not a content page.


Approximation of prime harmonics in 1ed1.99316c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.118 -0.480 +0.124 -0.386 +0.434 +0.233 +0.211 +0.990 -0.900 +0.416 +0.561
Relative (%) -5.9 -24.1 +6.2 -19.3 +21.8 +11.7 +10.6 +49.7 -45.1 +20.9 +28.1
Step 602 954 1398 1690 2083 2228 2461 2558 2723 2925 2983


Approximation of prime harmonics in 602edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.294 +0.397 -0.055 +0.842 +0.668 +0.692 -0.503 -0.367 +0.988 -0.850
Relative (%) +0.0 -14.7 +19.9 -2.8 +42.2 +33.5 +34.7 -25.2 -18.4 +49.5 -42.6
Steps
(reduced)
602
(0)
954
(352)
1398
(194)
1690
(486)
2083
(277)
2228
(422)
2461
(53)
2557
(149)
2723
(315)
2925
(517)
2982
(574)
 28.701432
 57.402864
 86.104296
 114.805728
 143.507160
 172.208592
 200.910024
 229.611456
 258.312888
 287.014320
 315.715752
 344.417184
 373.118616
 401.820048
 430.521480
 459.222912
 487.924344
 516.625776
 545.327208
 574.028640
 602.730072
 631.431504
 660.132936
 688.834368
 717.535800
 746.237232
 774.938664
 803.640096
 832.341528
 861.042960
 889.744392
 918.445824
 947.147256
 975.848688
 1004.550120
 1033.251552
 1061.952984
 1090.654416
 1119.355848
 1148.057280
 1176.758712
 1205.460144

APS720jot Eugene[9]
86.104296
315.715752
401.820048
487.924344
717.535800
803.640096
889.744392
1119.355848
1205.460144

.

pentatonic subsets
86.104296
487.924344
717.535800
803.640096
1205.460144

86.104296
487.924344
717.535800
889.744392
1205.460144

86.104296
487.924344
717.535800
1119.355848
1205.460144

315.715752
487.924344
717.535800
803.640096
1205.460144

315.715752
487.924344
717.535800
889.744392
1205.460144

315.715752
487.924344
717.535800
1119.355848
1205.460144

401.820048
487.924344
717.535800
803.640096
1205.460144

401.820048
487.924344
717.535800
889.744392
1205.460144

401.820048
487.924344
717.535800
1119.355848
1205.460144