This is a working out sandbox page, not a content page.


Approximation of prime harmonics in 1ed1.99316c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -0.118 -0.480 +0.124 -0.386 +0.434 +0.233 +0.211 +0.990 -0.900 +0.416 +0.561
Relative (%) -5.9 -24.1 +6.2 -19.3 +21.8 +11.7 +10.6 +49.7 -45.1 +20.9 +28.1
Step 602 954 1398 1690 2083 2228 2461 2558 2723 2925 2983


Approximation of prime harmonics in 602edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.294 +0.397 -0.055 +0.842 +0.668 +0.692 -0.503 -0.367 +0.988 -0.850
Relative (%) +0.0 -14.7 +19.9 -2.8 +42.2 +33.5 +34.7 -25.2 -18.4 +49.5 -42.6
Steps
(reduced)
602
(0)
954
(352)
1398
(194)
1690
(486)
2083
(277)
2228
(422)
2461
(53)
2557
(149)
2723
(315)
2925
(517)
2982
(574)
28.701432
57.402864
86.104296
114.805728
143.507160
172.208592
200.910024
229.611456
258.312888
287.014320
315.715752
344.417184
373.118616
401.820048
430.521480
459.222912
487.924344
516.625776
545.327208
574.028640
602.730072
631.431504
660.132936
688.834368
717.535800
746.237232
774.938664
803.640096
832.341528
861.042960
889.744392
918.445824
947.147256
975.848688
1004.550120
1033.251552
1061.952984
1090.654416
1119.355848
1148.057280
1176.758712
1205.460144

APS720jot Eugene[9] 86.104296 315.715752 401.820048 487.924344 717.535800 803.640096 889.744392 1119.355848 1205.460144

.

pentatonic subsets 86.104296 487.924344 717.535800 803.640096 1205.460144

86.104296 487.924344 717.535800 889.744392 1205.460144

86.104296 487.924344 717.535800 1119.355848 1205.460144

315.715752 487.924344 717.535800 803.640096 1205.460144

315.715752 487.924344 717.535800 889.744392 1205.460144

315.715752 487.924344 717.535800 1119.355848 1205.460144

401.820048 487.924344 717.535800 803.640096 1205.460144

401.820048 487.924344 717.535800 889.744392 1205.460144

401.820048 487.924344 717.535800 1119.355848 1205.460144