Generalized Tenney dual norms and Tp tuning space
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author mbattaglia1 and made on 2012-08-06 11:15:49 UTC.
- The original revision id was 356530718.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=Dual Norms= Given any [[Generalized Tenney Norms and Tp spaces|Tp norm]] on an interval space **Tp<span style="font-size: 10px; vertical-align: sub;">G</span>** associated with a group **G**, we can define a corresponding **dual norm** on the dual space **Tp<span style="font-size: 10px; vertical-align: sub;">G</span>*** which satisfies the following identity: [[math]] ||f|| = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||}: \vec{v} \in \textbf{Lp}\right \} [[math]] for all f in **Tp<span style="font-size: 10px; vertical-align: sub;">G</span>***. In the simplest case where **G** has as its chosen basis only primes and prime powers, and hence || · ||**<span style="font-size: 10px; vertical-align: sub;">Tp</span>** is given by [[math]] \left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p} [[math]] for weighting matrix **W<span style="font-size: 80%; vertical-align: sub;">G</span>**, then the dual norm || · ||**<span style="font-size: 10px; vertical-align: sub;">Tq*</span>** on **Tp<span style="font-size: 10px; vertical-align: sub;">G</span>*** is given by [[math]] \left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q} [[math]] where the coefficients p in Tp and q in Tq* satisfy the relationship 1/p + 1/q = 1.
Original HTML content:
<html><head><title>Generalized Tenney Dual Norms and Tp Tuning Space</title></head><body><!-- ws:start:WikiTextHeadingRule:3:<h1> --><h1 id="toc0"><a name="Dual Norms"></a><!-- ws:end:WikiTextHeadingRule:3 -->Dual Norms</h1> Given any <a class="wiki_link" href="/Generalized%20Tenney%20Norms%20and%20Tp%20spaces">Tp norm</a> on an interval space <strong>Tp<span style="font-size: 10px; vertical-align: sub;">G</span></strong> associated with a group <strong>G</strong>, we can define a corresponding <strong>dual norm</strong> on the dual space <strong>Tp<span style="font-size: 10px; vertical-align: sub;">G</span></strong>* which satisfies the following identity:<br /> <br /> <!-- ws:start:WikiTextMathRule:0: [[math]]<br/> ||f|| = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||}: \vec{v} \in \textbf{Lp}\right \}<br/>[[math]] --><script type="math/tex">||f|| = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||}: \vec{v} \in \textbf{Lp}\right \}</script><!-- ws:end:WikiTextMathRule:0 --><br /> <br /> for all f in <strong>Tp<span style="font-size: 10px; vertical-align: sub;">G</span></strong>*.<br /> <br /> In the simplest case where <strong>G</strong> has as its chosen basis only primes and prime powers, and hence || · ||<strong><span style="font-size: 10px; vertical-align: sub;">Tp</span></strong> is given by<br /> <br /> <!-- ws:start:WikiTextMathRule:1: [[math]]<br/> \left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}<br/>[[math]] --><script type="math/tex">\left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}</script><!-- ws:end:WikiTextMathRule:1 --><br /> <br /> for weighting matrix <strong>W<span style="font-size: 80%; vertical-align: sub;">G</span></strong>, then the dual norm || · ||<strong><span style="font-size: 10px; vertical-align: sub;">Tq*</span></strong> on <strong>Tp<span style="font-size: 10px; vertical-align: sub;">G</span></strong>* is given by<br /> <br /> <!-- ws:start:WikiTextMathRule:2: [[math]]<br/> \left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}<br/>[[math]] --><script type="math/tex">\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}</script><!-- ws:end:WikiTextMathRule:2 --><br /> <br /> where the coefficients p in Tp and q in Tq* satisfy the relationship 1/p + 1/q = 1.</body></html>