151ed4
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 149ed4 | 151ed4 | 153ed4 → |
151 equal divisions of the 4th harmonic (abbreviated 151ed4) is a nonoctave tuning system that divides the interval of 4/1 into 151 equal parts of about 15.9 ¢ each. Each step represents a frequency ratio of 41/151, or the 151st root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.9 | |
2 | 31.8 | |
3 | 47.7 | |
4 | 63.6 | 28/27 |
5 | 79.5 | 22/21, 45/43 |
6 | 95.4 | 37/35 |
7 | 111.3 | |
8 | 127.2 | |
9 | 143 | |
10 | 158.9 | 23/21, 57/52 |
11 | 174.8 | |
12 | 190.7 | |
13 | 206.6 | |
14 | 222.5 | 33/29 |
15 | 238.4 | |
16 | 254.3 | 22/19, 51/44 |
17 | 270.2 | |
18 | 286.1 | |
19 | 302 | |
20 | 317.9 | |
21 | 333.8 | |
22 | 349.7 | |
23 | 365.6 | 21/17 |
24 | 381.5 | |
25 | 397.4 | 39/31 |
26 | 413.2 | 33/26, 47/37 |
27 | 429.1 | 50/39 |
28 | 445 | 22/17 |
29 | 460.9 | 30/23 |
30 | 476.8 | 29/22 |
31 | 492.7 | |
32 | 508.6 | 51/38, 55/41 |
33 | 524.5 | 23/17 |
34 | 540.4 | |
35 | 556.3 | |
36 | 572.2 | |
37 | 588.1 | |
38 | 604 | |
39 | 619.9 | |
40 | 635.8 | |
41 | 651.7 | |
42 | 667.5 | |
43 | 683.4 | 43/29, 49/33 |
44 | 699.3 | |
45 | 715.2 | |
46 | 731.1 | 29/19 |
47 | 747 | |
48 | 762.9 | |
49 | 778.8 | |
50 | 794.7 | |
51 | 810.6 | |
52 | 826.5 | 50/31 |
53 | 842.4 | |
54 | 858.3 | 23/14 |
55 | 874.2 | |
56 | 890.1 | |
57 | 906 | |
58 | 921.9 | 46/27 |
59 | 937.7 | |
60 | 953.6 | 26/15 |
61 | 969.5 | |
62 | 985.4 | |
63 | 1001.3 | |
64 | 1017.2 | |
65 | 1033.1 | |
66 | 1049 | |
67 | 1064.9 | |
68 | 1080.8 | |
69 | 1096.7 | 49/26 |
70 | 1112.6 | 19/10 |
71 | 1128.5 | |
72 | 1144.4 | |
73 | 1160.3 | 43/22 |
74 | 1176.2 | |
75 | 1192.1 | |
76 | 1207.9 | |
77 | 1223.8 | |
78 | 1239.7 | 43/21, 45/22 |
79 | 1255.6 | 31/15 |
80 | 1271.5 | |
81 | 1287.4 | |
82 | 1303.3 | |
83 | 1319.2 | 15/7 |
84 | 1335.1 | |
85 | 1351 | |
86 | 1366.9 | |
87 | 1382.8 | 20/9 |
88 | 1398.7 | |
89 | 1414.6 | 43/19 |
90 | 1430.5 | |
91 | 1446.4 | |
92 | 1462.3 | |
93 | 1478.1 | |
94 | 1494 | 45/19 |
95 | 1509.9 | |
96 | 1525.8 | |
97 | 1541.7 | |
98 | 1557.6 | |
99 | 1573.5 | |
100 | 1589.4 | |
101 | 1605.3 | 43/17 |
102 | 1621.2 | 51/20 |
103 | 1637.1 | |
104 | 1653 | 13/5 |
105 | 1668.9 | |
106 | 1684.8 | 45/17 |
107 | 1700.7 | |
108 | 1716.6 | |
109 | 1732.5 | |
110 | 1748.3 | |
111 | 1764.2 | |
112 | 1780.1 | |
113 | 1796 | |
114 | 1811.9 | 37/13, 57/20 |
115 | 1827.8 | |
116 | 1843.7 | 29/10 |
117 | 1859.6 | |
118 | 1875.5 | |
119 | 1891.4 | |
120 | 1907.3 | |
121 | 1923.2 | |
122 | 1939.1 | |
123 | 1955 | |
124 | 1970.9 | |
125 | 1986.8 | |
126 | 2002.6 | 35/11 |
127 | 2018.5 | |
128 | 2034.4 | |
129 | 2050.3 | 49/15 |
130 | 2066.2 | 33/10 |
131 | 2082.1 | |
132 | 2098 | |
133 | 2113.9 | |
134 | 2129.8 | |
135 | 2145.7 | |
136 | 2161.6 | |
137 | 2177.5 | |
138 | 2193.4 | |
139 | 2209.3 | |
140 | 2225.2 | 47/13 |
141 | 2241.1 | |
142 | 2257 | |
143 | 2272.8 | 26/7 |
144 | 2288.7 | |
145 | 2304.6 | |
146 | 2320.5 | |
147 | 2336.4 | |
148 | 2352.3 | |
149 | 2368.2 | |
150 | 2384.1 | |
151 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.95 | +5.33 | +0.00 | -4.86 | -2.62 | +0.71 | +7.95 | -5.23 | +3.09 | -2.97 | +5.33 |
Relative (%) | +50.0 | +33.5 | +0.0 | -30.6 | -16.5 | +4.5 | +50.0 | -32.9 | +19.4 | -18.7 | +33.5 | |
Steps (reduced) |
76 (76) |
120 (120) |
151 (0) |
175 (24) |
195 (44) |
212 (61) |
227 (76) |
239 (88) |
251 (100) |
261 (110) |
271 (120) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.09 | -7.24 | +0.47 | +0.00 | +6.30 | +2.71 | +4.47 | -4.86 | +6.04 | +4.97 | +7.49 |
Relative (%) | -38.3 | -45.5 | +3.0 | +0.0 | +39.7 | +17.1 | +28.1 | -30.6 | +38.0 | +31.3 | +47.1 | |
Steps (reduced) |
279 (128) |
287 (136) |
295 (144) |
302 (0) |
309 (7) |
315 (13) |
321 (19) |
326 (24) |
332 (30) |
337 (35) |
342 (40) |