Dicot family
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-01-03 21:09:19 UTC.
- The original revision id was 289404847.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
[[toc|flat]] The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val <24 38 55| and [[31edo]] using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all. ==Seven limit children== The second comma of the [[Normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot, with wedgie <<2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie <<2 1 6 -3 4 11|| adds 28/27, and dichotic with wedgie <<2 1 -4 -3 -12 -12|| ads 64/63, all retaining the same period and generator. Decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie <<0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator. =Dicot= Comma: 25/24 POTE generator: ~5/4 = 348.594 Map: [<1 1 2|, <0 2 1|] EDOs: [[7edo|7]], [[10edo|10]], [[14edo|14c]], [[17edo|17]], [[24edo|24c]], [[31edo|31c]] Badness: 0.0130 ==7-limit== [[Comma]]s: 15/14, 25/24 [[POTE tuning|POTE generator]]: ~5/4 = 336.381 Map: [<1 1 2 3|, <0 2 1 3|] Wedgie: <<2 1 3 -3 -1 4|| EDOs: 4, 7, [[11edo|11c]], [[14edo|14cd]], [[18edo|18bc]], [[25edo|25bcd]] Badness: 0.0199 ==11-limit== Commas: 15/14, 22/21, 25/24 POTE generator: ~5/4 = 342.125 Map: [<1 1 2 2 2|, <0 2 1 3 5|] EDOs: 4e, 7 Badness: 0.0199 =Sharp= Commas: 25/24, 28/27 [[POTE tuning|POTE generator]]: 357.938 Map: [<1 1 2 1|, <0 2 1 6|] EDOs: [[10edo|10]], [[37edo|37cd]], [[57edo|57bcd]] =Decimal= Commas: 25/24, 49/48 [[POTE tuning|POTE generator]]: ~7/6 = 251.557 Map: [<2 0 3 4|, <0 2 1 1|] Wedgie: <<4 2 2 -6 -8 -1|| EDOs: [[10edo|10]], [[14edo|14c]], [[24edo|24c]], [[38edo|38cd]] Badness: 0.0283 ==11-limit== Commas: 25/24, 45/44, 49/48 [[POTE tuning|POTE generator]]: ~7/6 = 253.493 Map: [<2 0 3 4 -1|, <0 2 1 1 5|] EDOs: 10, 14c, 24c, 38cd Badness: 0.0267 ==Decimated== Commas: 25/24, 33/32, 49/48 [[POTE tuning|POTE generator]]: ~7/6 = 255.066 Map: [<2 0 3 4 10|, <0 2 1 1 -2|] EDOs: 4, 10e, 14c Badness: 0.0315 =Dichotic= Commas: 25/24, 64/63 POTE generator: ~5/4 = 356.264 Map: [<1 1 2 4|, <0 2 1 -4|] Wedgie: <<2 1 -4 -3 -12 -12|| EDOs: 7, 10, 17, 27c, 37c Badness: 0.0376 ==11-limit== Commas: 25/24, 45/44, 64/63 POTE generator: ~5/4 = 354.262 Map: [<1 1 2 4 2|, <0 2 1 -4 5|] EDOs: 7, 10, 17, 27ce, 44ce Badness: 0.0307 =Jamesbond= Commas: 25/24, 81/80 [[POTE tuning|POTE generator]]: 86.710 Map: [<7 11 16 20|, <0 0 0 -1|] EDOs: 7, [[14edo|14c]] =Sidi= Commas: 25/24, 245/243 [[POTE tuning|POTE generator]]: ~9/7 = 427.208 Map: [<1 3 3 6|, <0 -4 -2 -9|] EDOs: [[14edo|14c]], [[45edo|45c]], <59 93 135 165| Badness: 0.0566 ==11-limit== Commas: 25/24, 45/44, 99/98 POTE generator: ~9/7 = 427.273 Map: [<1 3 3 6 7|, <0 -4 -2 -9 -10|] EDOs: 14c, 17, 45ce, 59bccde Badness: 0.0330
Original HTML content:
<html><head><title>Dicot family</title></head><body><!-- ws:start:WikiTextTocRule:26:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --> | <a href="#Dicot">Dicot</a><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --> | <a href="#Sharp">Sharp</a><!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --> | <a href="#Decimal">Decimal</a><!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --><!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --><!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --> | <a href="#Dichotic">Dichotic</a><!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --><!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --> | <a href="#Jamesbond">Jamesbond</a><!-- ws:end:WikiTextTocRule:37 --><!-- ws:start:WikiTextTocRule:38: --> | <a href="#Sidi">Sidi</a><!-- ws:end:WikiTextTocRule:38 --><!-- ws:start:WikiTextTocRule:39: --><!-- ws:end:WikiTextTocRule:39 --><!-- ws:start:WikiTextTocRule:40: --> <!-- ws:end:WikiTextTocRule:40 --><br /> The <a class="wiki_link" href="/5-limit">5-limit</a> parent <a class="wiki_link" href="/comma">comma</a> for the dicot family is 25/24, the <a class="wiki_link" href="/chromatic%20semitone">chromatic semitone</a>. Its <a class="wiki_link" href="/monzo">monzo</a> is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the <a class="wiki_link" href="/wedgie">wedgie</a>. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/24edo">24edo</a> using the val <24 38 55| and <a class="wiki_link" href="/31edo">31edo</a> using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all.<br /> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2> The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which <a class="wiki_link" href="/7-limit">7-limit</a> family member we are looking at. Septimal dicot, with wedgie <<2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie <<2 1 6 -3 4 11|| adds 28/27, and dichotic with wedgie <<2 1 -4 -3 -12 -12|| ads 64/63, all retaining the same period and generator. Decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie <<0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Dicot"></a><!-- ws:end:WikiTextHeadingRule:2 -->Dicot</h1> Comma: 25/24<br /> <br /> POTE generator: ~5/4 = 348.594<br /> <br /> Map: [<1 1 2|, <0 2 1|]<br /> EDOs: <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/17edo">17</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/31edo">31c</a><br /> Badness: 0.0130<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="Dicot-7-limit"></a><!-- ws:end:WikiTextHeadingRule:4 -->7-limit</h2> <a class="wiki_link" href="/Comma">Comma</a>s: 15/14, 25/24<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~5/4 = 336.381<br /> <br /> Map: [<1 1 2 3|, <0 2 1 3|]<br /> Wedgie: <<2 1 3 -3 -1 4||<br /> EDOs: 4, 7, <a class="wiki_link" href="/11edo">11c</a>, <a class="wiki_link" href="/14edo">14cd</a>, <a class="wiki_link" href="/18edo">18bc</a>, <a class="wiki_link" href="/25edo">25bcd</a><br /> Badness: 0.0199<br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="Dicot-11-limit"></a><!-- ws:end:WikiTextHeadingRule:6 -->11-limit</h2> Commas: 15/14, 22/21, 25/24<br /> <br /> POTE generator: ~5/4 = 342.125<br /> <br /> Map: [<1 1 2 2 2|, <0 2 1 3 5|]<br /> EDOs: 4e, 7<br /> Badness: 0.0199<br /> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h1> --><h1 id="toc4"><a name="Sharp"></a><!-- ws:end:WikiTextHeadingRule:8 -->Sharp</h1> Commas: 25/24, 28/27<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 357.938<br /> <br /> Map: [<1 1 2 1|, <0 2 1 6|]<br /> EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/37edo">37cd</a>, <a class="wiki_link" href="/57edo">57bcd</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:10:<h1> --><h1 id="toc5"><a name="Decimal"></a><!-- ws:end:WikiTextHeadingRule:10 -->Decimal</h1> Commas: 25/24, 49/48<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 251.557<br /> <br /> Map: [<2 0 3 4|, <0 2 1 1|]<br /> Wedgie: <<4 2 2 -6 -8 -1||<br /> EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/38edo">38cd</a><br /> Badness: 0.0283<br /> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h2> --><h2 id="toc6"><a name="Decimal-11-limit"></a><!-- ws:end:WikiTextHeadingRule:12 -->11-limit</h2> Commas: 25/24, 45/44, 49/48<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 253.493<br /> <br /> Map: [<2 0 3 4 -1|, <0 2 1 1 5|]<br /> EDOs: 10, 14c, 24c, 38cd<br /> Badness: 0.0267<br /> <br /> <!-- ws:start:WikiTextHeadingRule:14:<h2> --><h2 id="toc7"><a name="Decimal-Decimated"></a><!-- ws:end:WikiTextHeadingRule:14 -->Decimated</h2> Commas: 25/24, 33/32, 49/48<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 255.066<br /> <br /> Map: [<2 0 3 4 10|, <0 2 1 1 -2|]<br /> EDOs: 4, 10e, 14c<br /> Badness: 0.0315<br /> <br /> <!-- ws:start:WikiTextHeadingRule:16:<h1> --><h1 id="toc8"><a name="Dichotic"></a><!-- ws:end:WikiTextHeadingRule:16 -->Dichotic</h1> Commas: 25/24, 64/63<br /> <br /> POTE generator: ~5/4 = 356.264<br /> <br /> Map: [<1 1 2 4|, <0 2 1 -4|]<br /> Wedgie: <<2 1 -4 -3 -12 -12||<br /> EDOs: 7, 10, 17, 27c, 37c<br /> Badness: 0.0376<br /> <br /> <!-- ws:start:WikiTextHeadingRule:18:<h2> --><h2 id="toc9"><a name="Dichotic-11-limit"></a><!-- ws:end:WikiTextHeadingRule:18 -->11-limit</h2> Commas: 25/24, 45/44, 64/63<br /> <br /> POTE generator: ~5/4 = 354.262<br /> <br /> Map: [<1 1 2 4 2|, <0 2 1 -4 5|]<br /> EDOs: 7, 10, 17, 27ce, 44ce<br /> Badness: 0.0307<br /> <br /> <!-- ws:start:WikiTextHeadingRule:20:<h1> --><h1 id="toc10"><a name="Jamesbond"></a><!-- ws:end:WikiTextHeadingRule:20 -->Jamesbond</h1> Commas: 25/24, 81/80<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 86.710<br /> <br /> Map: [<7 11 16 20|, <0 0 0 -1|]<br /> EDOs: 7, <a class="wiki_link" href="/14edo">14c</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:22:<h1> --><h1 id="toc11"><a name="Sidi"></a><!-- ws:end:WikiTextHeadingRule:22 -->Sidi</h1> Commas: 25/24, 245/243<br /> <br /> <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~9/7 = 427.208<br /> <br /> Map: [<1 3 3 6|, <0 -4 -2 -9|]<br /> EDOs: <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/45edo">45c</a>, <59 93 135 165|<br /> Badness: 0.0566<br /> <br /> <!-- ws:start:WikiTextHeadingRule:24:<h2> --><h2 id="toc12"><a name="Sidi-11-limit"></a><!-- ws:end:WikiTextHeadingRule:24 -->11-limit</h2> Commas: 25/24, 45/44, 99/98<br /> <br /> POTE generator: ~9/7 = 427.273<br /> <br /> Map: [<1 3 3 6 7|, <0 -4 -2 -9 -10|]<br /> EDOs: 14c, 17, 45ce, 59bccde<br /> Badness: 0.0330</body></html>