Cuthbert chords
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-12-07 15:40:23 UTC.
- The original revision id was 283424630.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
The **cuthbert triad** is an [[dyadic chord|essentially tempered dyadic triad]] which consists of two [[13_11|13/11]] thirds making up a [[7_5|7/5]], which implies tempering by [[cuthbert]], the [[847_845|847/845]] comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the [[garibert tetrad]], which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-[[6_5|6/5]], leading to a garibert tempering of 1-13/11-7/5-[[5_3|5/3]]. Equal temperaments with cuthbert triads include [[29edo]], [[33edo]], [[37edo]], [[41edo]], [[46edo]], [[50edo]], [[53edo]], [[58edo]], [[70edo]], [[87edo]], [[94edo]], [[99edo]], [[103edo]], [[111edo]], [[128edo]], [[140edo]], [[149edo]], [[177edo]], [[190edo]], 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of [[13-limit]] [[Schismatic family#Garibaldi|garibaldi temperament]].
Original HTML content:
<html><head><title>cuthbert triad</title></head><body>The <strong>cuthbert triad</strong> is an <a class="wiki_link" href="/dyadic%20chord">essentially tempered dyadic triad</a> which consists of two <a class="wiki_link" href="/13_11">13/11</a> thirds making up a <a class="wiki_link" href="/7_5">7/5</a>, which implies tempering by <a class="wiki_link" href="/cuthbert">cuthbert</a>, the <a class="wiki_link" href="/847_845">847/845</a> comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the <a class="wiki_link" href="/garibert%20tetrad">garibert tetrad</a>, which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-<a class="wiki_link" href="/6_5">6/5</a>, leading to a garibert tempering of 1-13/11-7/5-<a class="wiki_link" href="/5_3">5/3</a>. Equal temperaments with cuthbert triads include <a class="wiki_link" href="/29edo">29edo</a>, <a class="wiki_link" href="/33edo">33edo</a>, <a class="wiki_link" href="/37edo">37edo</a>, <a class="wiki_link" href="/41edo">41edo</a>, <a class="wiki_link" href="/46edo">46edo</a>, <a class="wiki_link" href="/50edo">50edo</a>, <a class="wiki_link" href="/53edo">53edo</a>, <a class="wiki_link" href="/58edo">58edo</a>, <a class="wiki_link" href="/70edo">70edo</a>, <a class="wiki_link" href="/87edo">87edo</a>, <a class="wiki_link" href="/94edo">94edo</a>, <a class="wiki_link" href="/99edo">99edo</a>, <a class="wiki_link" href="/103edo">103edo</a>, <a class="wiki_link" href="/111edo">111edo</a>, <a class="wiki_link" href="/128edo">128edo</a>, <a class="wiki_link" href="/140edo">140edo</a>, <a class="wiki_link" href="/149edo">149edo</a>, <a class="wiki_link" href="/177edo">177edo</a>, <a class="wiki_link" href="/190edo">190edo</a>, 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of <a class="wiki_link" href="/13-limit">13-limit</a> <a class="wiki_link" href="/Schismatic%20family#Garibaldi">garibaldi temperament</a>.</body></html>