Chords of meanpop
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-12-30 11:12:37 UTC.
- The original revision id was 288830279.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Meantone+family#Septimal meantone-Meanpop|meanpop temperament]]. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9. Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv. A chord requiring both of 81/80 and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop. Meanpop has MOS of size 5, 7, 12, 19, 31, 50 and 81. While 5-limit meantone has been thoroughly explored, the same is not true of meanpop. The 19 note MOS would seem to be a good place to start such explorations. =Triads= || Number || Chord || Transversal || Type || || 1 || 0-1-2 || 1-3/2-9/8 || ambitonal || || 2 || 0-1-3 || 1-3/2-5/3 || otonal || || 3 || 0-2-3 || 1-10/9-5/3 || utonal || || 4 || 0-1-4 || 1-3/2-5/4 || otonal || || 5 || 0-2-4 || 1-9/8-5/4 || otonal || || 6 || 0-3-4 || 1-5/3-5/4 || utonal || || 7 || 0-2-6 || 1-9/8-7/5 || marvel || || 8 || 0-3-6 || 1-5/3-7/5 || starling || || 9 || 0-4-6 || 1-5/4-7/5 || marvel || || 10 || 0-2-8 || 1-10/9-14/9 || otonal || || 11 || 0-4-8 || 1-5/4-14/9 || marvel || || 12 || 0-6-8 || 1-7/5-14/9 || utonal || || 13 || 0-1-9 || 1-3/2-7/6 || otonal || || 14 || 0-3-9 || 1-5/3-7/6 || otonal || || 15 || 0-6-9 || 1-7/5-7/6 || utonal || || 16 || 0-8-9 || 1-14/9-7/6 || utonal || || 17 || 0-1-10 || 1-3/2-7/4 || otonal || || 18 || 0-2-10 || 1-9/8-7/4 || otonal || || 19 || 0-4-10 || 1-5/4-7/4 || otonal || || 20 || 0-6-10 || 1-7/5-7/4 || utonal || || 21 || 0-8-10 || 1-14/9-7/4 || utonal || || 22 || 0-9-10 || 1-7/6-7/4 || utonal || || 23 || 0-3-13 || 1-5/3-16/11 || keenanismic || || 24 || 0-4-13 || 1-5/4-16/11 || keenanismic || || 25 || 0-9-13 || 1-7/6-16/11 || keenanismic || || 26 || 0-10-13 || 1-7/4-16/11 || keenanismic || || 27 || 0-1-14 || 1-3/2-12/11 || utonal || || 28 || 0-4-14 || 1-5/4-12/11 || keenanismic || || 29 || 0-6-14 || 1-7/5-12/11 || swetismic || || 30 || 0-8-14 || 1-14/9-12/11 || swetismic || || 31 || 0-10-14 || 1-7/4-12/11 || keenanismic || || 32 || 0-13-14 || 1-16/11-12/11 || otonal || || 33 || 0-1-15 || 1-3/2-18/11 || utonal || || 34 || 0-2-15 || 1-9/8-18/11 || utonal || || 35 || 0-6-15 || 1-7/5-18/11 || swetismic || || 36 || 0-9-15 || 1-7/6-18/11 || swetismic || || 37 || 0-13-15 || 1-16/11-18/11 || otonal || || 38 || 0-14-15 || 1-12/11-18/11 || otonal || || 39 || 0-2-17 || 1-10/9-20/11 || utonal || || 40 || 0-3-17 || 1-5/3-20/11 || utonal || || 41 || 0-4-17 || 1-5/4-20/11 || utonal || || 42 || 0-8-17 || 1-14/9-20/11 || swetismic || || 43 || 0-9-17 || 1-7/6-20/11 || swetismic || || 44 || 0-13-17 || 1-16/11-20/11 || otonal || || 45 || 0-14-17 || 1-12/11-20/11 || otonal || || 46 || 0-15-17 || 1-18/11-20/11 || otonal || || 47 || 0-6-23 || 1-7/5-14/11 || utonal || || 48 || 0-8-23 || 1-14/9-14/11 || utonal || || 49 || 0-9-23 || 1-7/6-14/11 || utonal || || 50 || 0-10-23 || 1-7/4-14/11 || utonal || || 51 || 0-13-23 || 1-16/11-14/11 || otonal || || 52 || 0-14-23 || 1-12/11-14/11 || otonal || || 53 || 0-15-23 || 1-18/11-14/11 || otonal || || 54 || 0-17-23 || 1-20/11-14/11 || otonal || =Tetrads= || Number || Chord || Transversal || Type || || 1 || 0-1-2-3 || 1-3/2-9/8-5/3 || didymic || || 2 || 0-1-2-4 || 1-3/2-9/8-5/4 || otonal || || 3 || 0-1-3-4 || 1-3/2-5/3-5/4 || ambitonal || || 4 || 0-2-3-4 || 1-10/9-5/3-5/4 || utonal || || 5 || 0-2-3-6 || 1-9/8-5/3-7/5 || erato || || 6 || 0-2-4-6 || 1-9/8-5/4-7/5 || erato || || 7 || 0-3-4-6 || 1-5/3-5/4-7/5 || erato || || 8 || 0-2-4-8 || 1-9/8-5/4-14/9 || erato || || 9 || 0-2-6-8 || 1-9/8-7/5-14/9 || erato || || 10 || 0-4-6-8 || 1-5/4-7/5-14/9 || erato || || 11 || 0-1-3-9 || 1-3/2-5/3-7/6 || otonal || || 12 || 0-3-6-9 || 1-5/3-7/5-7/6 || starling || || 13 || 0-6-8-9 || 1-7/5-14/9-7/6 || utonal || || 14 || 0-1-2-10 || 1-3/2-9/8-7/4 || otonal || || 15 || 0-1-4-10 || 1-3/2-5/4-7/4 || otonal || || 16 || 0-2-4-10 || 1-9/8-5/4-7/4 || otonal || || 17 || 0-2-6-10 || 1-9/8-7/5-7/4 || marvel || || 18 || 0-4-6-10 || 1-5/4-7/5-7/4 || marvel || || 19 || 0-2-8-10 || 1-9/8-14/9-7/4 || didymic || || 20 || 0-4-8-10 || 1-5/4-14/9-7/4 || marvel || || 21 || 0-6-8-10 || 1-7/5-14/9-7/4 || utonal || || 22 || 0-1-9-10 || 1-3/2-7/6-7/4 || ambitonal || || 23 || 0-6-9-10 || 1-7/5-7/6-7/4 || utonal || || 24 || 0-8-9-10 || 1-14/9-7/6-7/4 || utonal || || 25 || 0-3-4-13 || 1-5/3-5/4-16/11 || keenanismic || || 26 || 0-3-9-13 || 1-5/3-7/6-16/11 || keenanismic || || 27 || 0-4-10-13 || 1-5/4-7/4-16/11 || keenanismic || || 28 || 0-9-10-13 || 1-7/6-7/4-16/11 || keenanismic || || 29 || 0-1-4-14 || 1-3/2-5/4-12/11 || keenanismic || || 30 || 0-4-6-14 || 1-5/4-7/5-12/11 || unimarv || || 31 || 0-4-8-14 || 1-5/4-14/9-12/11 || unimarv || || 32 || 0-6-8-14 || 1-7/5-14/9-12/11 || terpsichore || || 33 || 0-1-10-14 || 1-3/2-7/4-12/11 || keenanismic || || 34 || 0-4-10-14 || 1-5/4-7/4-12/11 || keenanismic || || 35 || 0-6-10-14 || 1-7/5-7/4-12/11 || unimarv || || 36 || 0-8-10-14 || 1-14/9-7/4-12/11 || unimarv || || 37 || 0-4-13-14 || 1-5/4-16/11-12/11 || keenanismic || || 38 || 0-10-13-14 || 1-7/4-16/11-12/11 || keenanismic || || 39 || 0-1-2-15 || 1-3/2-9/8-18/11 || utonal || || 40 || 0-2-6-15 || 1-9/8-7/5-18/11 || unimarv || || 41 || 0-1-9-15 || 1-3/2-7/6-18/11 || swetismic || || 42 || 0-6-9-15 || 1-7/5-7/6-18/11 || swetismic || || 43 || 0-9-13-15 || 1-7/6-16/11-18/11 || unimarv || || 44 || 0-1-14-15 || 1-3/2-12/11-18/11 || ambitonal || || 45 || 0-6-14-15 || 1-7/5-12/11-18/11 || swetismic || || 46 || 0-13-14-15 || 1-16/11-12/11-18/11 || otonal || || 47 || 0-2-3-17 || 1-10/9-5/3-20/11 || utonal || || 48 || 0-2-4-17 || 1-10/9-5/4-20/11 || utonal || || 49 || 0-3-4-17 || 1-5/3-5/4-20/11 || utonal || || 50 || 0-2-8-17 || 1-9/8-14/9-20/11 || terpsichore || || 51 || 0-4-8-17 || 1-5/4-14/9-20/11 || unimarv || || 52 || 0-3-9-17 || 1-5/3-7/6-20/11 || swetismic || || 53 || 0-8-9-17 || 1-14/9-7/6-20/11 || swetismic || || 54 || 0-3-13-17 || 1-5/3-16/11-20/11 || keenanismic || || 55 || 0-4-13-17 || 1-5/4-16/11-20/11 || keenanismic || || 56 || 0-9-13-17 || 1-7/6-16/11-20/11 || unimarv || || 57 || 0-4-14-17 || 1-5/4-12/11-20/11 || keenanismic || || 58 || 0-8-14-17 || 1-14/9-12/11-20/11 || swetismic || || 59 || 0-13-14-17 || 1-16/11-12/11-20/11 || otonal || || 60 || 0-2-15-17 || 1-9/8-18/11-20/11 || didymic || || 61 || 0-9-15-17 || 1-7/6-18/11-20/11 || terpsichore || || 62 || 0-13-15-17 || 1-16/11-18/11-20/11 || otonal || || 63 || 0-14-15-17 || 1-12/11-18/11-20/11 || otonal || || 64 || 0-6-8-23 || 1-7/5-14/9-14/11 || utonal || || 65 || 0-6-9-23 || 1-7/5-7/6-14/11 || utonal || || 66 || 0-8-9-23 || 1-14/9-7/6-14/11 || utonal || || 67 || 0-6-10-23 || 1-7/5-7/4-14/11 || utonal || || 68 || 0-8-10-23 || 1-14/9-7/4-14/11 || utonal || || 69 || 0-9-10-23 || 1-7/6-7/4-14/11 || utonal || || 70 || 0-9-13-23 || 1-7/6-16/11-14/11 || keenanismic || || 71 || 0-10-13-23 || 1-7/4-16/11-14/11 || keenanismic || || 72 || 0-6-14-23 || 1-7/5-12/11-14/11 || swetismic || || 73 || 0-8-14-23 || 1-14/9-12/11-14/11 || swetismic || || 74 || 0-10-14-23 || 1-7/4-12/11-14/11 || keenanismic || || 75 || 0-13-14-23 || 1-16/11-12/11-14/11 || otonal || || 76 || 0-6-15-23 || 1-7/5-18/11-14/11 || swetismic || || 77 || 0-9-15-23 || 1-7/6-18/11-14/11 || swetismic || || 78 || 0-13-15-23 || 1-16/11-18/11-14/11 || otonal || || 79 || 0-14-15-23 || 1-12/11-18/11-14/11 || otonal || || 80 || 0-8-17-23 || 1-14/9-20/11-14/11 || swetismic || || 81 || 0-9-17-23 || 1-7/6-20/11-14/11 || swetismic || || 82 || 0-13-17-23 || 1-16/11-20/11-14/11 || otonal || || 83 || 0-14-17-23 || 1-12/11-20/11-14/11 || otonal || || 84 || 0-15-17-23 || 1-18/11-20/11-14/11 || otonal || =Pentads= || Number || Chord || Transversal || Type || || 1 || 0-1-2-3-4 || 1-3/2-9/8-5/3-5/4 || didymic || || 2 || 0-2-3-4-6 || 1-9/8-5/3-5/4-7/5 || erato || || 3 || 0-2-4-6-8 || 1-9/8-5/4-7/5-14/9 || erato || || 4 || 0-1-2-4-10 || 1-3/2-9/8-5/4-7/4 || otonal || || 5 || 0-2-4-6-10 || 1-9/8-5/4-7/5-7/4 || erato || || 6 || 0-2-4-8-10 || 1-9/8-5/4-14/9-7/4 || erato || || 7 || 0-2-6-8-10 || 1-9/8-7/5-14/9-7/4 || erato || || 8 || 0-4-6-8-10 || 1-5/4-7/5-14/9-7/4 || erato || || 9 || 0-6-8-9-10 || 1-7/5-14/9-7/6-7/4 || utonal || || 10 || 0-4-6-8-14 || 1-5/4-7/5-14/9-12/11 || meanpop || || 11 || 0-1-4-10-14 || 1-3/2-5/4-7/4-12/11 || keenanismic || || 12 || 0-4-6-10-14 || 1-5/4-7/5-7/4-12/11 || unimarv || || 13 || 0-4-8-10-14 || 1-5/4-14/9-7/4-12/11 || unimarv || || 14 || 0-6-8-10-14 || 1-7/5-14/9-7/4-12/11 || meanpop || || 15 || 0-4-10-13-14 || 1-5/4-7/4-16/11-12/11 || keenanismic || || 16 || 0-2-3-4-17 || 1-10/9-5/3-5/4-20/11 || utonal || || 17 || 0-2-4-8-17 || 1-9/8-5/4-14/9-20/11 || meanpop || || 18 || 0-3-4-13-17 || 1-5/3-5/4-16/11-20/11 || keenanismic || || 19 || 0-3-9-13-17 || 1-5/3-7/6-16/11-20/11 || unimarv || || 20 || 0-4-8-14-17 || 1-5/4-14/9-12/11-20/11 || unimarv || || 21 || 0-4-13-14-17 || 1-5/4-16/11-12/11-20/11 || keenanismic || || 22 || 0-9-13-15-17 || 1-7/6-16/11-18/11-20/11 || meanpop || || 23 || 0-13-14-15-17 || 1-16/11-12/11-18/11-20/11 || otonal || || 24 || 0-6-8-9-23 || 1-7/5-14/9-7/6-14/11 || utonal || || 25 || 0-6-8-10-23 || 1-7/5-14/9-7/4-14/11 || utonal || || 26 || 0-6-9-10-23 || 1-7/5-7/6-7/4-14/11 || utonal || || 27 || 0-8-9-10-23 || 1-14/9-7/6-7/4-14/11 || utonal || || 28 || 0-9-10-13-23 || 1-7/6-7/4-16/11-14/11 || keenanismic || || 29 || 0-6-8-14-23 || 1-7/5-14/9-12/11-14/11 || terpsichore || || 30 || 0-6-10-14-23 || 1-7/5-7/4-12/11-14/11 || unimarv || || 31 || 0-8-10-14-23 || 1-14/9-7/4-12/11-14/11 || unimarv || || 32 || 0-10-13-14-23 || 1-7/4-16/11-12/11-14/11 || keenanismic || || 33 || 0-6-9-15-23 || 1-7/5-7/6-18/11-14/11 || swetismic || || 34 || 0-9-13-15-23 || 1-7/6-16/11-18/11-14/11 || unimarv || || 35 || 0-6-14-15-23 || 1-7/5-12/11-18/11-14/11 || swetismic || || 36 || 0-13-14-15-23 || 1-16/11-12/11-18/11-14/11 || otonal || || 37 || 0-8-9-17-23 || 1-14/9-7/6-20/11-14/11 || swetismic || || 38 || 0-9-13-17-23 || 1-7/6-16/11-20/11-14/11 || unimarv || || 39 || 0-8-14-17-23 || 1-14/9-12/11-20/11-14/11 || swetismic || || 40 || 0-13-14-17-23 || 1-16/11-12/11-20/11-14/11 || otonal || || 41 || 0-9-15-17-23 || 1-7/6-18/11-20/11-14/11 || terpsichore || || 42 || 0-13-15-17-23 || 1-16/11-18/11-20/11-14/11 || otonal || || 43 || 0-14-15-17-23 || 1-12/11-18/11-20/11-14/11 || otonal || =Hexads= || Number || Chord || Transversal || Type || || 1 || 0-2-4-6-8-10 || 1-9/8-5/4-7/5-14/9-7/4 || erato || || 2 || 0-4-6-8-10-14 || 1-5/4-7/5-14/9-7/4-12/11 || meanpop || || 3 || 0-6-8-9-10-23 || 1-7/5-14/9-7/6-7/4-14/11 || utonal || || 4 || 0-6-8-10-14-23 || 1-7/5-14/9-7/4-12/11-14/11 || meanpop || || 5 || 0-9-13-15-17-23 || 1-7/6-16/11-18/11-20/11-14/11 || meanpop || || 6 || 0-13-14-15-17-23 || 1-16/11-12/11-18/11-20/11-14/11 || otonal ||
Original HTML content:
<html><head><title>Chords of meanpop</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit [[Meantone+family#Septimal meantone-Meanpop|meanpop temperament]]. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.<br /> <br /> Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv. A chord requiring both of 81/80 and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop.<br /> <br /> Meanpop has MOS of size 5, 7, 12, 19, 31, 50 and 81. While 5-limit meantone has been thoroughly explored, the same is not true of meanpop. The 19 note MOS would seem to be a good place to start such explorations.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> </table> <br /> <table class="wiki_table"> <tr> <td>1<br /> </td> <td>0-1-2<br /> </td> <td>1-3/2-9/8<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-3<br /> </td> <td>1-3/2-5/3<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-2-3<br /> </td> <td>1-10/9-5/3<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-1-4<br /> </td> <td>1-3/2-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-2-4<br /> </td> <td>1-9/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-3-4<br /> </td> <td>1-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-2-6<br /> </td> <td>1-9/8-7/5<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-3-6<br /> </td> <td>1-5/3-7/5<br /> </td> <td>starling<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-4-6<br /> </td> <td>1-5/4-7/5<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-2-8<br /> </td> <td>1-10/9-14/9<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-4-8<br /> </td> <td>1-5/4-14/9<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-6-8<br /> </td> <td>1-7/5-14/9<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-1-9<br /> </td> <td>1-3/2-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-3-9<br /> </td> <td>1-5/3-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-6-9<br /> </td> <td>1-7/5-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-8-9<br /> </td> <td>1-14/9-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-1-10<br /> </td> <td>1-3/2-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-2-10<br /> </td> <td>1-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-4-10<br /> </td> <td>1-5/4-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-6-10<br /> </td> <td>1-7/5-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-8-10<br /> </td> <td>1-14/9-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-9-10<br /> </td> <td>1-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-3-13<br /> </td> <td>1-5/3-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-4-13<br /> </td> <td>1-5/4-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-9-13<br /> </td> <td>1-7/6-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-10-13<br /> </td> <td>1-7/4-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-1-14<br /> </td> <td>1-3/2-12/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-4-14<br /> </td> <td>1-5/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-6-14<br /> </td> <td>1-7/5-12/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-8-14<br /> </td> <td>1-14/9-12/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-10-14<br /> </td> <td>1-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-13-14<br /> </td> <td>1-16/11-12/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-1-15<br /> </td> <td>1-3/2-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-2-15<br /> </td> <td>1-9/8-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-6-15<br /> </td> <td>1-7/5-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-9-15<br /> </td> <td>1-7/6-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-13-15<br /> </td> <td>1-16/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-14-15<br /> </td> <td>1-12/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-2-17<br /> </td> <td>1-10/9-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-3-17<br /> </td> <td>1-5/3-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-4-17<br /> </td> <td>1-5/4-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-8-17<br /> </td> <td>1-14/9-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-9-17<br /> </td> <td>1-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-13-17<br /> </td> <td>1-16/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-14-17<br /> </td> <td>1-12/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-15-17<br /> </td> <td>1-18/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-6-23<br /> </td> <td>1-7/5-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-8-23<br /> </td> <td>1-14/9-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-9-23<br /> </td> <td>1-7/6-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-10-23<br /> </td> <td>1-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-13-23<br /> </td> <td>1-16/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-14-23<br /> </td> <td>1-12/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-15-23<br /> </td> <td>1-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-17-23<br /> </td> <td>1-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2-3<br /> </td> <td>1-3/2-9/8-5/3<br /> </td> <td>didymic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-1-2-4<br /> </td> <td>1-3/2-9/8-5/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-1-3-4<br /> </td> <td>1-3/2-5/3-5/4<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-2-3-4<br /> </td> <td>1-10/9-5/3-5/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-2-3-6<br /> </td> <td>1-9/8-5/3-7/5<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-2-4-6<br /> </td> <td>1-9/8-5/4-7/5<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-3-4-6<br /> </td> <td>1-5/3-5/4-7/5<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-2-4-8<br /> </td> <td>1-9/8-5/4-14/9<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-2-6-8<br /> </td> <td>1-9/8-7/5-14/9<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-4-6-8<br /> </td> <td>1-5/4-7/5-14/9<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-1-3-9<br /> </td> <td>1-3/2-5/3-7/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-3-6-9<br /> </td> <td>1-5/3-7/5-7/6<br /> </td> <td>starling<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-6-8-9<br /> </td> <td>1-7/5-14/9-7/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-1-2-10<br /> </td> <td>1-3/2-9/8-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-1-4-10<br /> </td> <td>1-3/2-5/4-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-2-4-10<br /> </td> <td>1-9/8-5/4-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-2-6-10<br /> </td> <td>1-9/8-7/5-7/4<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-4-6-10<br /> </td> <td>1-5/4-7/5-7/4<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-2-8-10<br /> </td> <td>1-9/8-14/9-7/4<br /> </td> <td>didymic<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-4-8-10<br /> </td> <td>1-5/4-14/9-7/4<br /> </td> <td>marvel<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-6-8-10<br /> </td> <td>1-7/5-14/9-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-1-9-10<br /> </td> <td>1-3/2-7/6-7/4<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-6-9-10<br /> </td> <td>1-7/5-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-8-9-10<br /> </td> <td>1-14/9-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-3-4-13<br /> </td> <td>1-5/3-5/4-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-3-9-13<br /> </td> <td>1-5/3-7/6-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-4-10-13<br /> </td> <td>1-5/4-7/4-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-9-10-13<br /> </td> <td>1-7/6-7/4-16/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-1-4-14<br /> </td> <td>1-3/2-5/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-4-6-14<br /> </td> <td>1-5/4-7/5-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-4-8-14<br /> </td> <td>1-5/4-14/9-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-6-8-14<br /> </td> <td>1-7/5-14/9-12/11<br /> </td> <td>terpsichore<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-1-10-14<br /> </td> <td>1-3/2-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-4-10-14<br /> </td> <td>1-5/4-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-6-10-14<br /> </td> <td>1-7/5-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-8-10-14<br /> </td> <td>1-14/9-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-4-13-14<br /> </td> <td>1-5/4-16/11-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-10-13-14<br /> </td> <td>1-7/4-16/11-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-1-2-15<br /> </td> <td>1-3/2-9/8-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-2-6-15<br /> </td> <td>1-9/8-7/5-18/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-1-9-15<br /> </td> <td>1-3/2-7/6-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-6-9-15<br /> </td> <td>1-7/5-7/6-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-9-13-15<br /> </td> <td>1-7/6-16/11-18/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-1-14-15<br /> </td> <td>1-3/2-12/11-18/11<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-6-14-15<br /> </td> <td>1-7/5-12/11-18/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-13-14-15<br /> </td> <td>1-16/11-12/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-2-3-17<br /> </td> <td>1-10/9-5/3-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-2-4-17<br /> </td> <td>1-10/9-5/4-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-3-4-17<br /> </td> <td>1-5/3-5/4-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-2-8-17<br /> </td> <td>1-9/8-14/9-20/11<br /> </td> <td>terpsichore<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-4-8-17<br /> </td> <td>1-5/4-14/9-20/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-3-9-17<br /> </td> <td>1-5/3-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-8-9-17<br /> </td> <td>1-14/9-7/6-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-3-13-17<br /> </td> <td>1-5/3-16/11-20/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-4-13-17<br /> </td> <td>1-5/4-16/11-20/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-9-13-17<br /> </td> <td>1-7/6-16/11-20/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-4-14-17<br /> </td> <td>1-5/4-12/11-20/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-8-14-17<br /> </td> <td>1-14/9-12/11-20/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-13-14-17<br /> </td> <td>1-16/11-12/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>60<br /> </td> <td>0-2-15-17<br /> </td> <td>1-9/8-18/11-20/11<br /> </td> <td>didymic<br /> </td> </tr> <tr> <td>61<br /> </td> <td>0-9-15-17<br /> </td> <td>1-7/6-18/11-20/11<br /> </td> <td>terpsichore<br /> </td> </tr> <tr> <td>62<br /> </td> <td>0-13-15-17<br /> </td> <td>1-16/11-18/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>63<br /> </td> <td>0-14-15-17<br /> </td> <td>1-12/11-18/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>64<br /> </td> <td>0-6-8-23<br /> </td> <td>1-7/5-14/9-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>65<br /> </td> <td>0-6-9-23<br /> </td> <td>1-7/5-7/6-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>66<br /> </td> <td>0-8-9-23<br /> </td> <td>1-14/9-7/6-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>67<br /> </td> <td>0-6-10-23<br /> </td> <td>1-7/5-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>68<br /> </td> <td>0-8-10-23<br /> </td> <td>1-14/9-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>69<br /> </td> <td>0-9-10-23<br /> </td> <td>1-7/6-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>70<br /> </td> <td>0-9-13-23<br /> </td> <td>1-7/6-16/11-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>71<br /> </td> <td>0-10-13-23<br /> </td> <td>1-7/4-16/11-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>72<br /> </td> <td>0-6-14-23<br /> </td> <td>1-7/5-12/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>73<br /> </td> <td>0-8-14-23<br /> </td> <td>1-14/9-12/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>74<br /> </td> <td>0-10-14-23<br /> </td> <td>1-7/4-12/11-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>75<br /> </td> <td>0-13-14-23<br /> </td> <td>1-16/11-12/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>76<br /> </td> <td>0-6-15-23<br /> </td> <td>1-7/5-18/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>77<br /> </td> <td>0-9-15-23<br /> </td> <td>1-7/6-18/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>78<br /> </td> <td>0-13-15-23<br /> </td> <td>1-16/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>79<br /> </td> <td>0-14-15-23<br /> </td> <td>1-12/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>80<br /> </td> <td>0-8-17-23<br /> </td> <td>1-14/9-20/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>81<br /> </td> <td>0-9-17-23<br /> </td> <td>1-7/6-20/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>82<br /> </td> <td>0-13-17-23<br /> </td> <td>1-16/11-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>83<br /> </td> <td>0-14-17-23<br /> </td> <td>1-12/11-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>84<br /> </td> <td>0-15-17-23<br /> </td> <td>1-18/11-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-1-2-3-4<br /> </td> <td>1-3/2-9/8-5/3-5/4<br /> </td> <td>didymic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-2-3-4-6<br /> </td> <td>1-9/8-5/3-5/4-7/5<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-2-4-6-8<br /> </td> <td>1-9/8-5/4-7/5-14/9<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-1-2-4-10<br /> </td> <td>1-3/2-9/8-5/4-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-2-4-6-10<br /> </td> <td>1-9/8-5/4-7/5-7/4<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-2-4-8-10<br /> </td> <td>1-9/8-5/4-14/9-7/4<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-2-6-8-10<br /> </td> <td>1-9/8-7/5-14/9-7/4<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-4-6-8-10<br /> </td> <td>1-5/4-7/5-14/9-7/4<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-6-8-9-10<br /> </td> <td>1-7/5-14/9-7/6-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-4-6-8-14<br /> </td> <td>1-5/4-7/5-14/9-12/11<br /> </td> <td>meanpop<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-1-4-10-14<br /> </td> <td>1-3/2-5/4-7/4-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-4-6-10-14<br /> </td> <td>1-5/4-7/5-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-4-8-10-14<br /> </td> <td>1-5/4-14/9-7/4-12/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-6-8-10-14<br /> </td> <td>1-7/5-14/9-7/4-12/11<br /> </td> <td>meanpop<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-4-10-13-14<br /> </td> <td>1-5/4-7/4-16/11-12/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-2-3-4-17<br /> </td> <td>1-10/9-5/3-5/4-20/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-2-4-8-17<br /> </td> <td>1-9/8-5/4-14/9-20/11<br /> </td> <td>meanpop<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-3-4-13-17<br /> </td> <td>1-5/3-5/4-16/11-20/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-3-9-13-17<br /> </td> <td>1-5/3-7/6-16/11-20/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-4-8-14-17<br /> </td> <td>1-5/4-14/9-12/11-20/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-4-13-14-17<br /> </td> <td>1-5/4-16/11-12/11-20/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-9-13-15-17<br /> </td> <td>1-7/6-16/11-18/11-20/11<br /> </td> <td>meanpop<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-13-14-15-17<br /> </td> <td>1-16/11-12/11-18/11-20/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-6-8-9-23<br /> </td> <td>1-7/5-14/9-7/6-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-6-8-10-23<br /> </td> <td>1-7/5-14/9-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-6-9-10-23<br /> </td> <td>1-7/5-7/6-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-8-9-10-23<br /> </td> <td>1-14/9-7/6-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-9-10-13-23<br /> </td> <td>1-7/6-7/4-16/11-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-6-8-14-23<br /> </td> <td>1-7/5-14/9-12/11-14/11<br /> </td> <td>terpsichore<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-6-10-14-23<br /> </td> <td>1-7/5-7/4-12/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-8-10-14-23<br /> </td> <td>1-14/9-7/4-12/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-10-13-14-23<br /> </td> <td>1-7/4-16/11-12/11-14/11<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-6-9-15-23<br /> </td> <td>1-7/5-7/6-18/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-9-13-15-23<br /> </td> <td>1-7/6-16/11-18/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-6-14-15-23<br /> </td> <td>1-7/5-12/11-18/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-13-14-15-23<br /> </td> <td>1-16/11-12/11-18/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-8-9-17-23<br /> </td> <td>1-14/9-7/6-20/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-9-13-17-23<br /> </td> <td>1-7/6-16/11-20/11-14/11<br /> </td> <td>unimarv<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-8-14-17-23<br /> </td> <td>1-14/9-12/11-20/11-14/11<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-13-14-17-23<br /> </td> <td>1-16/11-12/11-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-9-15-17-23<br /> </td> <td>1-7/6-18/11-20/11-14/11<br /> </td> <td>terpsichore<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-13-15-17-23<br /> </td> <td>1-16/11-18/11-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-14-15-17-23<br /> </td> <td>1-12/11-18/11-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-2-4-6-8-10<br /> </td> <td>1-9/8-5/4-7/5-14/9-7/4<br /> </td> <td>erato<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-4-6-8-10-14<br /> </td> <td>1-5/4-7/5-14/9-7/4-12/11<br /> </td> <td>meanpop<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-6-8-9-10-23<br /> </td> <td>1-7/5-14/9-7/6-7/4-14/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-6-8-10-14-23<br /> </td> <td>1-7/5-14/9-7/4-12/11-14/11<br /> </td> <td>meanpop<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-9-13-15-17-23<br /> </td> <td>1-7/6-16/11-18/11-20/11-14/11<br /> </td> <td>meanpop<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-13-14-15-17-23<br /> </td> <td>1-16/11-12/11-18/11-20/11-14/11<br /> </td> <td>otonal<br /> </td> </tr> </table> </body></html>