Catalog of thirteen-limit rank two temperaments

Revision as of 12:55, 27 January 2015 by Wikispaces>genewardsmith (**Imported revision 538711332 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2015-01-27 12:55:48 UTC.
The original revision id was 538711332.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below is a **complete** listing of all 239 13-limit rank-two temperaments with [[generator complexity]] less than 40 and TE badness less than 0.025, obtained by the method discussed [[The wedgie|here]]. The TE error is multiplied by 1200 so that it can be thought of as cents, and the badness is multiplied by 1000. Some "Junk" temperaments of very low complexity and high error are listed below the main list, which is ordered by increasing generator complexity, with ties broken by TE complexity.

=Temperament list= 
|| Name || Complexity || Error || Badness || Mapping || Commas ||
|| [[@Dicot family|Dicot]] (extension) || 1.6214 || 27.3134 || 18.9555 || [<1 1 2 2 2 2], <0 2 1 3 5 6]] || 15/14 22/21 25/24 52/49 ||
|| [[@Father family|Father]] (extension) || 1.6967 || 21.9084 || 20.1335 || [<1 0 4 -2 -3 7], <0 1 -1 3 4 -2]] || 16/15 22/21 26/25 28/27 ||
||   || 1.7156 || 27.3628 || 22.7796 || [<1 1 2 2 2 4], <0 2 1 3 5 -1]] || 15/14 22/21 25/24 40/39 ||
||   || 1.7344 || 27.8260 || 21.2719 || [<1 0 -4 -2 -6 -1], <0 1 4 3 6 3]] || 14/13 21/20 27/26 45/44 ||
||   || 1.7810 || 27.5776 || 24.7359 || [<1 0 -4 -5 -6 -1], <0 1 4 5 6 3]] || 15/14 22/21 27/26 40/39 ||
||   || 1.7872 || 36.0627 || 24.9964 || [<1 0 4 6 10 7], <0 1 -1 -2 -4 -2]] || 14/13 16/15 26/25 35/33 ||
||   || 1.8400 || 30.6716 || 23.4200 || [<1 1 2 3 4 4], <0 2 1 -1 -2 -1]] || 14/13 21/20 25/24 33/32 ||
||   || 1.8400 || 26.9815 || 23.8284 || [<1 1 2 2 4 4], <0 2 1 3 -2 -1]] || 15/14 25/24 33/32 40/39 ||
||   || 1.9230 || 27.4422 || 23.2705 || [<1 0 7 6 5 10], <0 1 -3 -2 -1 -4]] || 15/14 22/21 40/39 52/49 ||
||   || 2.0118 || 27.4831 || 23.7844 || [<1 0 -4 -2 5 -1], <0 1 4 3 -1 3]] || 14/13 21/20 27/26 33/32 ||
|| [[@Bug family|Beep]] (extension) || 2.0235 || 19.3072 || 18.0832 || [<1 0 0 2 -2 -1], <0 2 3 1 7 6]] || 21/20 26/25 27/25 45/44 ||
||   || 2.0521 || 22.3720 || 21.6827 || [<1 0 4 -2 -3 -6], <0 1 -1 3 4 6]] || 16/15 22/21 28/27 52/49 ||
||   || 2.1027 || 19.4190 || 22.7850 || [<1 0 0 2 5 6], <0 2 3 1 -2 -3]] || 21/20 27/25 66/65 99/98 ||
||   || 2.1372 || 14.5611 || 22.2357 || [<3 0 7 -1 1 11], <0 1 0 2 2 0]] || 26/25 36/35 45/44 56/55 ||
|| [[@Porcupine family#Hystrix|Hystrix]] (extension) || 2.1534 || 17.2113 || 19.8014 || [<1 2 3 3 4 4], <0 -3 -5 -1 -4 -2]] || 22/21 36/35 40/39 52/49 ||
||   || 2.1534 || 17.4180 || 22.5573 || [<5 8 0 14 6 7], <0 0 1 0 1 1]] || 28/27 35/33 40/39 49/48 ||
|| [[@Bug family#Pentoid|Pentoid]] (extension) || 2.1996 || 18.8797 || 21.1593 || [<1 0 0 2 5 -1], <0 2 3 1 -2 6]] || 21/20 26/25 27/25 33/32 ||
|| [[@Father]] variant || 2.2249 || 19.9728 || 21.1254 || [<1 0 4 -2 10 7], <0 1 -1 3 -4 -2]] || 16/15 26/25 28/27 77/75 ||
|| [[Pelogic family|Pelogic]] (extension) || 2.2355 || 17.0065 || 21.5281 || [<1 0 7 9 5 -1], <0 1 -3 -4 -1 3]] || 21/20 27/26 33/32 65/64 ||
||   || 2.2524 || 18.4570 || 22.2116 || [<1 0 7 9 5 13], <0 1 -3 -4 -1 -6]] || 21/20 26/25 33/32 45/44 ||
||   || 2.4075 || 17.3437 || 21.8080 || [<1 1 2 1 2 4], <0 2 1 6 5 -1]] || 25/24 28/27 35/33 40/39 ||
||   || 2.4120 || 22.2679 || 24.9369 || [<1 0 4 11 10 7], <0 1 -1 -5 -4 -2]] || 16/15 22/21 26/25 100/99 ||
||   || 2.4321 || 17.9441 || 23.0236 || [<1 1 2 1 2 1], <0 2 1 6 5 9]] || 25/24 28/27 35/33 65/63 ||
|| [[@Augmented family|August]] || 2.4321 || 11.6244 || 18.4482 || [<3 0 7 -1 1 -3], <0 1 0 2 2 3]] || 27/26 36/35 45/44 56/55 ||
|| [[@Meantone family#Dominant-Arnold|Arnold]] || 2.4351 || 20.2444 || 23.3005 || [<1 0 -4 6 5 -1], <0 1 4 -2 -1 3]] || 22/21 27/26 33/32 40/39 ||
|| [[@Meantone family#Dominant-Dominatrix|Dominatrix]] || 2.4468 || 13.7371 || 18.2887 || [<1 0 -4 6 -6 -1], <0 1 4 -2 6 3]] || 27/26 36/35 45/44 64/63 ||
|| [[@Dicot family#Jamesbond|Jamesbond]] || 2.4935 || 16.1224 || 23.0035 || [<7 11 16 0 24 26], <0 0 0 1 0 0]] || 25/24 27/26 33/32 45/44 ||
|| [[@Dicot family#Jamesbond|Septimal]] || 2.4935 || 13.2598 || 22.5694 || [<7 11 16 0 24 6], <0 0 0 1 0 1]] || 25/24 33/32 45/44 65/63 ||
|| [[@Diminished]] variant || 2.5237 || 17.3415 || 21.6035 || [<4 0 3 5 1 2], <0 1 1 1 2 2]] || 22/21 26/25 36/35 50/49 ||
|| Diminished variant || 2.5237 || 15.0507 || 23.8852 || [<4 0 3 5 14 2], <0 1 1 1 0 2]] || 26/25 36/35 50/49 56/55 ||
|| Diminished variant || 2.5237 || 11.9675 || 19.5087 || [<4 0 3 5 14 15], <0 1 1 1 0 0]] || 36/35 40/39 50/49 66/65 ||
|| [[@Trienstonic clan#Octokaidecal|Octokaidecal]] variant || 2.5841 || 16.7342 || 22.5814 || [<2 0 -5 -4 -6 1], <0 1 3 3 4 2]] || 22/21 28/27 40/39 50/49 ||
|| Octokaidecal (extension) || 2.5841 || 13.2207 || 20.6424 || [<2 0 -5 -4 7 1], <0 1 3 3 0 2]] || 28/27 40/39 50/49 55/54 ||
||   || 2.6867 || 18.7092 || 22.7413 || [<1 1 2 4 4 4], <0 2 1 -4 -2 -1]] || 22/21 25/24 33/32 40/39 ||
|| [[@Dicot family#Dichotic|Dichotic]] (extension) || 2.8702 || 14.1529 || 21.6740 || [<1 1 2 4 2 4], <0 2 1 -4 5 -1]] || 25/24 40/39 45/44 65/63 ||
|| [[@Decimal]] (extension) || 2.8906 || 12.3389 || 21.3256 || [<2 0 3 4 -1 1], <0 2 1 1 5 4]] || 25/24 45/44 49/48 78/77 ||
|| [[@Archytas clan|Blacksmith ]]variant || 2.8906 || 11.1408 || 22.3247 || [<5 8 0 14 -6 7], <0 0 1 0 2 1]] || 28/27 40/39 49/48 66/65 ||
|| [[@pajara|Pajaric]] || 2.9846 || 11.0657 || 20.4605 || [<2 0 11 12 7 17], <0 1 -2 -2 0 -3]] || 40/39 45/44 50/49 56/55 ||
|| [[@Armodue]] (extension) || 3.0731 || 12.8903 || 19.3512 || [<1 0 7 -5 5 -1], <0 1 -3 5 -1 3]] || 27/26 33/32 36/35 45/44 ||
|| [[@Progression]] || 3.1546 || 11.1466 || 18.1575 || [<1 1 2 2 3 3], <0 5 3 7 4 6]] || 26/25 36/35 56/55 66/65 ||
|| [[@Opossum]] variant || 3.2059 || 14.1496 || 24.4605 || [<1 2 3 4 4 5], <0 -3 -5 -9 -4 -10]] || 26/25 28/27 55/54 65/63 ||
|| Opossum || 3.2059 || 10.9238 || 19.3894 || [<1 2 3 4 4 4], <0 -3 -5 -9 -4 -2]] || 28/27 40/39 55/54 66/65 ||
|| 12 & 12f || 3.2429 || 11.5467 || 24.8352 || [<12 19 28 34 42 0], <0 0 0 0 0 1]] || 36/35 45/44 50/49 56/55 ||
|| [[@Diminished]] variant || 3.4688 || 11.0754 || 22.8374 || [<4 0 3 5 -5 -4], <0 1 1 1 3 3]] || 27/26 36/35 45/44 50/49 ||
|| [[Meantone family#Godzilla-13-limit|Godzilla]] || 3.4688 || 8.1712 || 22.5029 || [<1 0 -4 2 -6 -5], <0 2 8 1 12 11]] || 45/44 49/48 78/77 81/80 ||
|| [[Meantone family#Septimal meantone-Meanundec|Meanundec]] || 3.5621 || 12.3475 || 24.2428 || [<1 0 -4 -13 -6 -1], <0 1 4 10 6 3]] || 27/26 40/39 45/44 56/55 ||
|| Blacksmith (extension) || 3.5987 || 10.3814 || 20.4976 || [<5 8 0 14 29 7], <0 0 1 0 -1 1]] || 28/27 40/39 49/48 55/54 ||
|| [[@Augmented family#Triforce|Triforce]] || 3.7856 || 7.9575 || 20.2480 || [<3 0 7 6 8 4], <0 2 0 1 1 3]] || 49/48 56/55 66/65 77/75 ||
|| [[@Kleismic family#Keemun-Darjeeling|Darjeeling]] (extension) || 3.7856 || 7.3788 || 21.4453 || [<1 0 1 2 0 0], <0 6 5 3 13 14]] || 49/48 55/54 66/65 77/75 ||
|| [[@Negri]] || 3.8157 || 8.6891 || 17.8329 || [<1 2 2 3 4 4], <0 -4 3 -2 -5 -3]] || 45/44 49/48 56/55 78/77 ||
|| [[@Negric]] || 3.8157 || 8.5618 || 20.2047 || [<1 2 2 3 3 4], <0 -4 3 -2 4 -3]] || 33/32 49/48 65/64 91/90 ||
|| [[@Pelogic family#Superpelog|Superpelog]] (extension) || 3.8459 || 10.9415 || 22.4731 || [<1 0 7 2 5 6], <0 2 -6 1 -2 -3]] || 33/32 45/44 49/48 78/77 ||
||   || 4.0235 || 8.0673 || 23.5937 || [<1 0 -4 2 5 -5], <0 2 8 1 -2 11]] || 33/32 49/48 55/54 91/90 ||
|| [[@Augene]] || 4.0300 || 8.4291 || 20.7855 || [<3 0 7 18 20 16], <0 1 0 -2 -2 -1]] || 40/39 56/55 64/63 66/65 ||
|| [[@Meantone family#meanenneadecal|Meanenneadecal]] || 4.0536 || 7.5265 || 21.1818 || [<1 0 -4 -13 -6 -20], <0 1 4 10 6 15]] || 45/44 56/55 78/77 81/80 ||
|| [[@Dominant]] || 4.1548 || 9.0031 || 24.1076 || [<1 0 -4 6 13 18], <0 1 4 -2 -6 -9]] || 36/35 56/55 64/63 66/65 ||
|| [[@Porcupine]] variant || 4.2906 || 7.7242 || 21.2764 || [<1 2 3 2 4 4], <0 -3 -5 6 -4 -2]] || 40/39 55/54 64/63 66/65 ||
|| [[@Hedgehog]] (extension) || 4.3068 || 7.9361 || 21.5156 || [<2 1 1 2 4 3], <0 3 5 5 4 6]] || 50/49 55/54 65/63 99/98 ||
|| [[@Kleismic family#Keemun|Keemun]] variant || 4.3637 || 6.3766 || 22.7494 || [<1 0 1 2 4 0], <0 6 5 3 -2 14]] || 49/48 56/55 91/90 625/624 ||
|| [[@Sensi]] variant || 4.6307 || 7.4628 || 23.2580 || [<1 6 8 11 11 10], <0 -7 -9 -13 -12 -10]] || 55/54 66/65 77/75 143/140 ||
|| [[@Sensis]] || 4.6307 || 5.5229 || 20.0172 || [<1 6 8 11 6 10], <0 -7 -9 -13 -4 -10]] || 56/55 78/77 91/90 100/99 ||
|| [[@Meantone family|Meanenneadecal]] variant || 4.6430 || 8.6347 || 24.7630 || [<1 0 -4 -13 -6 10], <0 1 4 10 6 -4]] || 45/44 56/55 65/64 81/80 ||
|| [[@Pajara]] variant || 4.7306 || 7.8062 || 22.6765 || [<2 0 11 12 26 17], <0 1 -2 -2 -6 -3]] || 40/39 50/49 64/63 99/98 ||
|| [[@Meantone family#injera|Injera]] || 4.8643 || 6.7024 || 21.5655 || [<2 0 -8 -7 -12 -21], <0 1 4 4 6 9]] || 45/44 50/49 78/77 99/98 ||
|| [[@Meantone family#flattone|Flattone]] variant || 4.9286 || 8.2456 || 24.9444 || [<1 0 -4 17 5 10], <0 1 4 -9 -1 -4]] || 33/32 55/54 65/64 105/104 ||
|| Flattone (extension) || 4.9403 || 6.1445 || 22.2597 || [<1 0 -4 17 -6 10], <0 1 4 -9 6 -4]] || 45/44 65/64 78/77 81/80 ||
|| [[@Porcupine family#Nautilus|Nautilus]] || 5.1345 || 5.6901 || 22.2846 || [<1 2 3 3 4 5], <0 -6 -10 -3 -8 -19]] || 49/48 55/54 91/90 100/99 ||
|| [[http://dictionary.reference.com/browse/goodness|Meantone]] || 5.2032 || 4.3643 || 18.0484 || [<1 0 -4 -13 -25 -20], <0 1 4 10 18 15]] || 66/65 81/80 99/98 105/104 ||
|| [[@Archytas clan|Ringo]] || 5.3214 || 5.7998 || 22.6194 || [<1 1 5 4 2 4], <0 2 -9 -4 5 -1]] || 56/55 64/63 78/77 91/90 ||
|| [[@Superpyth]] (extension) || 5.3375 || 5.1055 || 24.6725 || [<1 0 -12 6 -22 -17], <0 1 9 -2 16 13]] || 64/63 78/77 91/90 100/99 ||
|| [[Augmented family#Augene-11-limit-Ogene|Ogene]] || 5.3801 || 5.4596 || 22.8903 || [<3 0 7 18 20 -8], <0 1 0 -2 -2 4]] || 56/55 64/63 91/90 100/99 ||
|| [[@Meantone family#Undevigintone-13-limit|Undevigintone]] || 5.4922 || 4.8990 || 22.9331 || [<19 30 44 53 0 70], <0 0 0 0 1 0]] || 49/48 65/64 81/80 91/90 ||
|| [[@Negroni]] || 5.6280 || 5.5412 || 21.5588 || [<1 2 2 3 5 4], <0 -4 3 -2 -15 -3]] || 49/48 55/54 65/64 91/90 ||
||   || 5.6784 || 5.4793 || 24.1428 || [<9 0 21 11 17 19], <0 1 0 1 1 1]] || 56/55 78/77 91/90 128/125 ||
|| [[@Orwell|Blair]] || 5.7085 || 5.5776 || 23.0863 || [<1 0 3 1 3 3], <0 7 -3 8 2 3]] || 65/64 78/77 91/90 99/98 ||
|| [[@Semicomma family|Winston]] || 5.7085 || 4.3658 || 19.9306 || [<1 0 3 1 3 1], <0 7 -3 8 2 12]] || 66/65 99/98 105/104 121/120 ||
|| [[Augmented family#Augene-11-limit-Agene|Agene]] || 5.9464 || 5.4878 || 23.1130 || [<3 0 7 18 20 35], <0 1 0 -2 -2 -5]] || 56/55 64/63 78/77 100/99 ||
|| [[@Pajara]] || 6.1261 || 4.7671 || 22.3268 || [<2 0 11 12 26 36], <0 1 -2 -2 -6 -9]] || 50/49 64/63 99/98 975/968 ||
|| [[@Cassandra]] || 6.3059 || 3.2191 || 20.7493 || [<1 0 15 25 32 37], <0 1 -8 -14 -18 -21]] || 100/99 105/104 196/195 245/242 ||
|| [[@Jubilismic clan#crepuscular%20|Crepuscular]] || 6.3093 || 4.5686 || 24.3679 || [<2 2 3 4 6 6], <0 5 7 7 4 6]] || 50/49 78/77 99/98 144/143 ||
|| [[@Negril]] || 6.5706 || 5.1756 || 24.3832 || [<1 2 2 3 2 4], <0 -4 3 -2 14 -3]] || 49/48 65/64 91/90 875/858 ||
|| Modus || 6.7257 || 4.1699 || 23.8059 || [<1 1 1 4 2 4], <0 4 9 -8 10 -2]] || 64/63 78/77 100/99 144/143 ||
|| Lupercalia || 6.7470 || 4.1905 || 21.3278 || [<1 1 2 3 3 3], <0 9 5 -3 7 11]] || 66/65 105/104 121/120 126/125 ||
|| [[@Superkleismic]] || 6.7470 || 3.2749 || 21.4777 || [<1 4 5 2 4 8], <0 -9 -10 3 -2 -16]] || 100/99 105/104 245/242 1188/1183 ||
|| [[@Nusecond]] || 6.9402 || 4.0097 || 23.3231 || [<1 3 4 5 5 5], <0 -11 -13 -17 -12 -10]] || 66/65 99/98 121/120 126/125 ||
|| [[@Magic]] || 7.1768 || 3.2665 || 21.5095 || [<1 0 2 -1 6 -2], <0 5 1 12 -8 18]] || 100/99 105/104 144/143 196/195 ||
|| [[@Miracle extensions|Miraculous]] || 7.3507 || 2.7371 || 18.6685 || [<1 1 3 3 2 4], <0 6 -7 -2 15 -3]] || 105/104 144/143 196/195 275/273 ||
|| [[@Mohajira]] || 7.3637 || 4.3193 || 23.3878 || [<1 1 0 6 2 4], <0 2 8 -11 5 -1]] || 66/65 105/104 121/120 512/507 ||
|| Mothra || 7.4806 || 3.6713 || 23.9543 || [<1 1 0 3 5 1], <0 3 12 -1 -8 14]] || 81/80 99/98 105/104 144/143 ||
|| [[@Würschmidt]] || 7.4927 || 2.7652 || 23.5928 || [<1 7 3 15 17 1], <0 -8 -1 -18 -20 4]] || 99/98 144/143 176/175 275/273 ||
|| Meanpop || 7.8114 || 3.1263 || 20.8828 || [<1 0 -4 -13 24 -20], <0 1 4 10 -13 15]] || 81/80 105/104 144/143 196/195 ||
|| Agora || 7.8369 || 3.4913 || 24.5215 || [<1 3 8 6 7 14], <0 -4 -16 -9 -10 -29]] || 81/80 99/98 105/104 121/120 ||
|| [[@Marvel temperaments#Tritonic|Tritonic]] || 8.0189 || 2.8102 || 22.9934 || [<1 4 -3 -3 2 -5], <0 -5 11 12 3 18]] || 105/104 121/120 196/195 275/273 ||
|| Dwynwen || 8.0948 || 2.9858 || 23.4609 || [<1 1 2 3 3 2], <0 9 5 -3 7 26]] || 91/90 121/120 126/125 176/175 ||
|| Bohpier || 8.2021 || 2.7870 || 24.8637 || [<1 0 0 0 2 2], <0 13 19 23 12 14]] || 100/99 144/143 245/243 275/273 ||
|| Myna || 8.5778 || 1.9478 || 17.1255 || [<1 9 9 8 22 0], <0 -10 -9 -7 -25 5]] || 126/125 144/143 176/175 196/195 ||
|| Octacot || 8.8331 || 2.6029 || 23.2762 || [<1 1 1 2 2 4], <0 8 18 11 20 -4]] || 100/99 144/143 243/242 245/242 ||
|| Sensus || 8.9610 || 2.9616 || 20.7887 || [<1 6 8 11 23 10], <0 -7 -9 -13 -31 -10]] || 91/90 126/125 169/168 352/351 ||
|| Leapday || 9.0442 || 2.8672 || 24.7316 || [<1 0 -31 -21 -14 -9], <0 1 21 15 11 8]] || 91/90 121/120 169/168 441/440 ||
|| Cataclysmic || 9.2501 || 2.4818 || 22.5549 || [<1 0 1 -3 -5 0], <0 6 5 22 32 14]] || 99/98 169/168 176/175 275/273 ||
|| Diaschismic || 9.3690 || 1.7525 || 18.9259 || [<2 0 11 31 45 55], <0 1 -2 -8 -12 -15]] || 126/125 176/175 196/195 364/363 ||
|| Septimin || 9.5243 || 2.7176 || 23.1168 || [<1 4 1 5 5 7], <0 -11 6 -10 -7 -15]] || 105/104 144/143 196/195 245/242 ||
|| Witchcraft || 9.5391 || 2.5946 || 23.5472 || [<1 0 2 -1 -7 -2], <0 5 1 12 33 18]] || 105/104 196/195 245/243 1188/1183 ||
|| [[@Orwell]] || 9.5510 || 2.3097 || 19.7181 || [<1 0 3 1 3 8], <0 7 -3 8 2 -19]] || 99/98 121/120 176/175 275/273 ||
|| Bunya || 9.8019 || 2.6925 || 24.8861 || [<1 1 1 -1 2 4], <0 4 9 26 10 -2]] || 100/99 144/143 243/242 275/273 ||
|| Thuja || 10.7770 || 1.9835 || 22.8384 || [<1 8 5 -2 4 16], <0 -12 -5 9 -1 -23]] || 126/125 144/143 176/175 364/363 ||
|| Alicorn || 10.7943 || 1.9579 || 23.6666 || [<1 2 3 4 3 5], <0 -8 -13 -23 9 -25]] || 126/125 144/143 196/195 676/675 ||
|| Hemififths || 11.0372 || 1.5814 || 19.0896 || [<1 1 -5 -1 2 4], <0 2 25 13 5 -1]] || 144/143 196/195 243/242 364/363 ||
|| Valentino || 11.0831 || 2.0505 || 20.6653 || [<1 1 2 3 3 5], <0 9 5 -3 7 -20]] || 121/120 126/125 176/175 196/195 ||
|| Hendec || 11.2093 || 1.1966 || 17.7067 || [<2 5 8 5 6 8], <0 -6 -11 2 3 -2]] || 169/168 325/324 364/363 1716/1715 ||
|| Bisemidim || 11.3567 || 1.8575 || 23.8769 || [<2 1 2 2 5 5], <0 9 11 15 8 10]] || 126/125 144/143 196/195 364/363 ||
|| Infraorwell || 11.3869 || 1.9483 || 23.6834 || [<1 14 0 16 12 20], <0 -16 3 -17 -11 -21]] || 144/143 176/175 196/195 364/363 ||
|| Garibaldi || 11.6354 || 1.4775 || 20.6757 || [<1 0 15 25 -33 -28], <0 1 -8 -14 23 20]] || 225/224 275/273 325/324 385/384 ||
|| Hitchcock || 11.6543 || 1.9118 || 22.4484 || [<1 3 6 -2 6 2], <0 -5 -13 17 -9 6]] || 121/120 169/168 176/175 325/324 ||
|| Quartonic || 11.8517 || 1.7776 || 23.8747 || [<1 2 3 3 5 4], <0 -11 -18 -5 -41 -8]] || 169/168 176/175 325/324 540/539 ||
|| Buzzard || 12.3421 || 1.1747 || 18.8425 || [<1 0 -6 4 -12 -7], <0 4 21 -3 39 27]] || 176/175 351/350 676/675 847/845 ||
|| Echidna || 12.4332 || 1.4956 || 23.6786 || [<2 1 9 2 12 19], <0 3 -6 5 -7 -16]] || 176/175 351/350 364/363 540/539 ||
|| Mystery || 12.4896 || 1.0869 || 18.5912 || [<29 46 0 14 33 40], <0 0 1 1 1 1]] || 196/195 352/351 364/363 676/675 ||
|| Sruti || 12.7068 || 1.8820 || 23.7911 || [<2 0 11 -15 -1 9], <0 2 -4 13 5 -1]] || 144/143 176/175 351/350 676/675 ||
|| Compton || 12.9714 || 1.2359 || 21.8524 || [<12 19 0 -22 -42 -67], <0 0 1 2 3 4]] || 225/224 351/350 364/363 441/440 ||
|| Lizard || 12.9759 || 1.3242 || 21.7807 || [<2 1 5 2 8 11], <0 6 -1 10 -3 -10]] || 225/224 351/350 364/363 385/384 ||
|| Ennealimnic || 13.0079 || 1.3158 || 20.6966 || [<9 1 1 12 -2 20], <0 2 3 2 5 2]] || 169/168 243/242 325/324 441/440 ||
|| Marvolo || 13.0470 || 1.3528 || 21.4699 || [<1 2 1 1 2 3], <0 -6 19 26 21 10]] || 169/168 225/224 364/363 441/440 ||
|| [[Rodan]] || 13.2667 || 1.3261 || 18.4483 || [<1 1 -1 3 6 8], <0 3 17 -1 -13 -22]] || 196/195 245/243 352/351 364/363 ||
|| [[@Miracle extensions|Manna]] || 13.2838 || 1.1773 || 17.0122 || [<1 1 3 3 2 0], <0 6 -7 -2 15 38]] || 225/224 243/242 325/324 385/384 ||
|| Tritikleismic || 13.4940 || .8133 || 15.6523 || [<3 0 3 10 8 0], <0 6 5 -2 3 14]] || 325/324 364/363 441/440 625/624 ||
|| [[@Miracle extensions|Benediction]] || 13.5241 || 1.0143 || 15.7152 || [<1 1 3 3 2 7], <0 6 -7 -2 15 -34]] || 225/224 243/242 351/350 441/440 ||
|| [[Catakleismic]] || 13.9069 || 1.1908 || 16.8832 || [<1 0 1 -3 9 0], <0 6 5 22 -21 14]] || 169/168 225/224 325/324 385/384 ||
|| Qilin || 14.1642 || 1.6395 || 22.8419 || [<1 2 3 4 6 5], <0 -8 -13 -23 -49 -25]] || 126/125 176/175 196/195 2200/2197 ||
|| [[Harry]] || 14.6430 || .7511 || 13.0465 || [<2 4 7 7 9 11], <0 -6 -17 -10 -15 -26]] || 243/242 351/350 441/440 676/675 ||
|| Semimiracle || 14.7014 || 1.3334 || 24.6222 || [<2 2 6 6 4 7], <0 6 -7 -2 15 2]] || 169/168 225/224 243/242 385/384 ||
|| Catalytic || 14.7423 || 1.3244 || 22.3368 || [<1 0 1 -3 -10 0], <0 6 5 22 51 14]] || 169/168 225/224 325/324 1716/1715 ||
|| Octopus || 15.1423 || 1.1002 || 21.6786 || [<8 1 3 3 16 14], <0 3 4 5 3 4]] || 169/168 325/324 364/363 540/539 ||
|| Enneaportent || 15.2328 || 1.3133 || 22.3223 || [<9 0 28 11 24 19], <0 2 -1 2 1 2]] || 169/168 225/224 364/363 1716/1715 ||
|| Bikleismic || 15.6731 || 1.3198 || 21.8142 || [<2 0 2 -6 -1 0], <0 6 5 22 15 14]] || 169/168 225/224 243/242 325/324 ||
|| Hemithirds || 15.6794 || 1.1293 || 21.7376 || [<1 4 2 2 7 0], <0 -15 2 5 -22 23]] || 196/195 352/351 1001/1000 1029/1024 ||
|| Gizzard || 15.7868 || .9255 || 20.2519 || [<2 1 5 2 8 -2], <0 6 -1 10 -3 26]] || 225/224 325/324 385/384 1573/1568 ||
|| Coditone || 16.1784 || 1.1526 || 24.3522 || [<1 6 3 13 -3 2], <0 -13 -2 -30 19 5]] || 225/224 351/350 385/384 847/845 ||
|| Bison || 17.5050 || .7645 || 23.5039 || [<2 5 7 3 3 4], <0 -7 -9 10 15 13]] || 351/350 364/363 441/440 10985/10976 ||
|| Mirkat || 17.8357 || .6381 || 18.6316 || [<3 2 1 2 9 1], <0 6 13 14 3 22]] || 351/350 540/539 676/675 1375/1372 ||
|| Subfourth || 18.4588 || .9671 || 23.7996 || [<1 0 17 4 11 16], <0 4 -37 -3 -19 -31]] || 352/351 364/363 540/539 676/675 ||
||   Mintone || 18.5191 || .9414 || 21.8493 || [<1 5 9 7 12 11], <0 -22 -43 -27 -55 -47]] || 243/242 351/350 441/440 1188/1183 ||
||   Hemiseven || 18.5600 || .8367 || 21.9005 || [<1 4 14 2 -5 19], <0 -6 -29 2 21 -38]] || 351/350 385/384 441/440 676/675 ||
|| Quadritikleismic || 18.6111 || .6278 || 18.7309 || [<4 0 4 7 17 0], <0 6 5 4 -3 14]] || 325/324 385/384 625/624 1573/1568 ||
|| [[Sqrtphi]] || 18.9279 || .7746 || 20.0402 || [<1 12 11 16 17 28], <0 -30 -25 -38 -39 -70]] || 325/324 364/363 625/624 1375/1372 ||
|| Supers || 19.8111 || .7880 || 21.6449 || [<2 1 -12 2 -9 -2], <0 3 23 5 22 13]] || 352/351 540/539 729/728 1575/1573 ||
|| Kwai  || 19.8873 || .7677 || 24.5550 || [<1 0 -50 -40 32 37], <0 1 33 27 -18 -21]] || 352/351 540/539 729/728 1375/1372 ||
||   || 19.9476 || .8865 || 24.3714 || [<1 0 1 -12 -5 0], <0 6 5 56 32 14]] || 325/324352/351 364/363 625/624 ||
||   || 20.2345 || .6664 || 21.6939 || [<1 13 17 13 32 9], <0 -28 -36 -25 -70 -13]] || 243/242 351/350 441/440 10985/10976 ||
|| Countercata || 20.2925 || .8135 || 20.1564 || [<1 0 1 11 -5 0], <0 6 5 -31 32 14]] || 325/324 352/351 385/384 625/624 ||
|| Ketchup || 20.4870 || .8412 || 24.8236 || [<2 3 4 6 7 8], <0 4 15 -9 -2 -14]] || 325/324 352/351 847/845 1331/1323 ||
||   || 21.5338 || .5670 || 21.1879 || [<2 0 -35 -15 -47 -37], <0 2 25 13 34 28]] || 352/351 676/675 847/845 1716/1715 ||
||   || 21.8078 || .7473 || 24.8390 || [<1 9 2 7 17 -5], <0 -23 1 -13 -42 27]] || 352/351 540/539 625/624 1375/1372 ||
||   || 22.1019 || .7291 || 23.0740 || [<1 15 4 7 37 -29], <0 -16 -2 -5 -40 39]] || 243/242 351/350 441/440 3584/3575 ||
|| Ekadash || 22.2725 || .5694 || 20.3814 || [<2 5 8 5 6 19], <0 -6 -11 2 3 -38]] || 385/384441/440 625/624 729/728 ||
|| Arch || 23.8240 || .5728 || 19.5041 || [<1 2 2 2 3 4], <0 -18 14 35 20 -13]] || 364/363 441/440 676/675 3136/3125 ||
||   || 24.3209 || .6708 || 22.3961 || [<1 1 7 5 2 -2], <0 4 -32 -15 10 39]] || 243/242364/363 441/440 105644/105625 ||
|| Ennealimnic || 24.3214 || .7265 || 23.2502 || [<9 1 1 12 -2 -33], <0 2 3 2 5 10]] || 243/242 364/363 441/440 625/624 ||
||   || 24.7013 || .6592 || 23.9401 || [<1 6 8 17 -6 16], <0 -14 -18 -45 30 -39]] || 351/350 540/539 676/675 3136/3125 ||
||   || 24.7390 || .6202 || 21.6356 || [<1 16 8 -2 17 12], <0 -33 -13 11 -31 -19]] || 385/384 441/440 625/624 847/845 ||
||   || 25.1580 || .5751 || 22.9233 || [<3 0 26 56 8 23], <0 2 -8 -20 1 -5]] || 352/351 676/675 847/845 3025/3024 ||
||   || 25.4024 || .5479 || 23.8618 || [<1 2 3 3 4 5], <0 -30 -49 -14 -39 -94]] || 364/363 441/440 676/675 4375/4374 ||
||   || 26.0158 || .4227 || 23.9484 || [<10 0 -56 -67 -108 37], <0 1 5 6 9 0]] || 441/440 729/728 1001/1000 4225/4224 ||
|| Hemischis || 26.2491 || .5658 || 20.8155 || [<1 0 15 -17 51 14], <0 2 -16 25 -60 -13]] || 351/350 540/539 676/675 40656/40625 ||
||   || 26.6197 || .5984 || 24.4449 || [<1 28 -7 30 19 34], <0 -34 12 -35 -20 -39]] || 364/363 540/539 676/675 3584/3575 ||
||   || 27.1080 || .4537 || 22.8872 || [<2 4 4 7 6 11], <0 -9 7 -15 10 -39]] || 540/539 729/728 4000/3993 21168/21125 ||
|| Pogo || 27.6987 || .3280 || 17.5141 || [<2 1 22 2 25 -2], <0 3 -24 5 -25 13]] || 540/539 729/728 4000/3993 10985/10976 ||
|| Octoid || 28.1048 || .3789 || 15.2738 || [<8 1 3 3 16 -21], <0 3 4 5 3 13]] || 540/539 625/624 1375/1372 4000/3993 ||
|| Hemiennealimmal || 29.1857 || .2310 || 12.5045 || [<18 0 -1 22 48 -19], <0 2 3 2 1 6]] || 676/675 1001/1000 1716/1715 3025/3024 ||
|| Quanharuk || 33.1711 || .3531 || 21.3919 || [<1 0 15 12 -7 -15], <0 5 -40 -29 33 59]] || 540/539 1375/1372 4096/4095 6656/6655 ||
||   || 33.4393 || .3824 || 21.1266 || [<1 34 17 34 53 30], <0 -53 -24 -51 -81 -43]] || 540/539 625/624 1375/1372 2200/2197 ||
||   || 33.5315 || .2302 || 19.4943 || [<1 48 5 76 107 76], <0 -52 -3 -82 -116 -81]] || 676/675 1716/1715 3025/3024 4225/4224 ||
||   || 33.6103 || .3698 || 24.8815 || [<1 11 38 37 -1 26], <0 -19 -72 -69 9 -45]] || 540/539 729/728 1375/1372 2200/2197 ||
||   || 34.4541 || .3541 || 20.1941 || [<2 1 -5 2 -2 -2], <0 9 40 15 37 39]] || 540/539 729/728 1575/1573 2200/2197 ||
||   || 34.6430 || .3993 || 23.3876 || [<2 14 6 9 -10 25], <0 -16 -2 -5 25 -26]] || 676/675 1001/1000 1716/1715 3136/3125 ||
|| Abigail || 35.2653 || .1098 || 8.8558 || [<2 7 13 -1 1 -2], <0 -11 -24 19 17 27]] || 1716/1715 2080/2079 3025/3024 4096/4095 ||
|| Decoid || 35.7438 || .2238 || 13.4746 || [<10 0 47 36 98 37], <0 2 -3 -1 -8 0]] || 676/675 1001/1000 1716/1715 4225/4224 ||
||   || 36.1768 || .2313 || 16.2821 || [<2 4 9 8 12 13], <0 -8 -42 -23 -49 -54]] || 676/675 1001/1000 1716/1715 10648/10647 ||
||   || 36.3331 || .2325 || 18.6469 || [<3 0 -18 -32 8 -21], <0 4 21 34 2 27]] || 676/675 1001/1000 3025/3024 10985/10976 ||
||   || 37.3448 || .2265 || 20.4161 || [<2 12 20 6 5 17], <0 -23 -40 -1 5 -25]] || 1716/1715 2080/2079 2200/2197 3025/3024 ||
||   || 37.8845 || .3814 || 23.6158 || [<1 0 15 -59 135 56], <0 1 -8 39 -83 -33]] || 540/539 625/624 729/728 2200/2197 ||
||   || 38.3738 || .2790 || 22.4115 || [<1 27 54 35 6 124], <0 -30 -61 -38 -3 -142]] || 729/728 1001/1000 1716/1715 3025/3024 ||
||   || 38.6520 || .2333 || 15.5572 || [<3 2 8 16 9 8], <0 8 -3 -22 4 9]] || 676/675 1001/1000 3025/3024 4096/4095 ||
|| Deca || 39.1828 || .1817 || 16.8103 || [<10 4 9 2 18 37], <0 5 6 11 7 0]] || 1001/1000 3025/3024 4225/4224 4375/4374 ||
||   || 39.4548 || .2872 || 20.8877 || [<1 29 33 25 25 99], <0 -42 -47 -34 -33 -146]] || 625/624 1575/1573 2080/2079 2401/2400 ||

=Junk temperaments= 
|| Name || Complexity || Error || Badness || Mapping || Commas ||
||   || .2702 || 336.2129 || 17.8545 || [<1 2 2 3 3 0], <0 0 0 0 0 1]] || 4/3 5/3 7/6 11/6 ||
||   || .2891 || 283.7695 || 17.6578 || [<1 2 2 3 0 4], <0 0 0 0 1 0]] || 4/3 5/3 7/6 13/9 ||
||   || .2891 || 287.8202 || 24.1056 || [<1 2 2 3 0 0], <0 0 0 0 1 1]] || 4/3 5/3 7/6 13/11 ||
||   || .5405 || 108.8851 || 16.3368 || [<2 3 5 6 7 0], <0 0 0 0 0 1]] || 6/5 8/7 9/7 11/10 ||
||   || .5781 || 130.7392 || 21.2974 || [<2 3 5 6 0 7], <0 0 0 0 1 0]] || 6/5 8/7 9/7 13/10 ||
||   || .6309 || 149.7414 || 19.8124 || [<1 0 1 1 2 2], <0 1 1 1 1 1]] || 6/5 7/5 11/10 13/10 ||
||   || .6309 || 145.2377 || 21.5971 || [<1 0 2 1 2 2], <0 1 0 1 1 1]] || 5/4 7/6 12/11 13/11 ||
||   || .6309 || 135.7653 || 21.7806 || [<1 0 2 1 3 2], <0 1 0 1 0 1]] || 5/4 7/6 11/8 13/12 ||
||   || .6309 || 118.9826 || 21.3636 || [<1 0 1 3 2 2], <0 1 1 0 1 1]] || 6/5 8/7 11/10 13/10 ||
||   || .6309 || 118.2399 || 24.7286 || [<1 0 1 3 2 1], <0 1 1 0 1 2]] || 6/5 8/7 11/10 15/13 ||
||   || .6309 || 99.9329 || 21.2702 || [<1 0 1 3 2 4], <0 1 1 0 1 0]] || 6/5 8/7 11/10 14/13 ||
||   || .7124 || 120.1537 || 22.8145 || [<1 0 1 0 2 1], <0 1 1 2 1 2]] || 6/5 9/7 11/10 14/13 ||
||   || .7124 || 112.9622 || 24.7317 || [<2 3 5 0 7 7], <0 0 0 1 0 0]] || 6/5 9/8 11/10 13/10 ||
||   || .8107 || 83.1978 || 22.0229 || [<3 5 7 8 10 0], <0 0 0 0 0 1]] || 7/6 10/9 11/9 16/15 ||
||   || .8614 || 81.8009 || 18.7149 || [<1 0 -1 1 0 2], <0 1 2 1 2 1]] || 7/6 10/9 11/9 13/12 ||
||   || .8614 || 93.1286 || 21.7729 || [<1 0 -1 1 2 2], <0 1 2 1 1 1]] || 7/6 10/9 12/11 13/11 ||
||   || .8614 || 76.3571 || 22.8403 || [<1 0 -1 3 2 2], <0 1 2 0 1 1]] || 8/7 10/9 12/11 13/11 ||
||   || .8614 || 57.0733 || 19.3277 || [<2 3 0 1 2 7], <0 0 1 1 1 0]] || 9/8 11/10 13/12 15/14 ||
||   || .8614 || 61.7635 || 21.4961 || [<2 3 0 1 7 3], <0 0 1 1 0 1]] || 9/8 12/11 14/13 15/13 ||
||   || .8614 || 64.6390 || 22.8779 || [<2 3 0 1 7 7], <0 0 1 1 0 0]] || 9/8 12/11 13/11 15/14 ||
||   || .8672 || 75.4782 || 22.2821 || [<3 5 7 8 0 11], <0 0 0 0 1 0]] || 7/6 10/9 13/12 16/15 ||
||   || 1.0616 || 72.2918 || 22.6134 || [<1 0 4 3 2 2], <0 1 -1 0 1 1]] || 8/7 12/11 13/11 15/14 ||
||   || 1.0616 || 68.1560 || 21.3950 || [<1 0 4 3 2 4], <0 1 -1 0 1 0]] || 8/7 12/11 14/13 15/13 ||
||   || 1.0686 || 48.2352 || 24.6210 || [<3 5 7 0 2 11], <0 0 0 1 1 0]] || 10/9 13/12 16/15 22/21 ||
||   || 1.0686 || 46.0898 || 24.1511 || [<3 5 7 0 2 3], <0 0 0 1 1 1]] || 10/9 14/13 16/15 22/21 ||
||   || 1.0810 || 54.4751 || 21.7669 || [<4 6 9 11 14 0], <0 0 0 0 0 1]] || 9/8 12/11 15/14 25/22 ||
||   || 1.0810 || 53.8146 || 21.8059 || [<2 3 0 1 2 -2], <0 0 1 1 1 2]] || 9/8 11/10 15/14 26/25 ||
||   || 1.1563 || 51.8815 || 22.1512 || [<1 0 -1 -2 -3 2], <0 1 2 3 4 1]] || 10/9 13/12 15/14 22/21 ||
||   || 1.1563 || 55.5099 || 24.5510 || [<4 6 9 11 0 15], <0 0 0 0 1 0]] || 9/8 14/13 15/13 35/32 ||
||   || 1.1563 || 41.3624 || 24.4943 || [<4 6 9 11 0 1], <0 0 0 0 1 1]] || 9/8 15/14 25/24 55/52 ||
||   || 1.1714 || 53.8501 || 22.8620 || [<1 0 4 3 2 7], <0 1 -1 0 1 -2]] || 8/7 12/11 15/14 26/25 ||
||   || 1.2619 || 55.5942 || 23.7686 || [<1 1 2 2 3 3], <0 2 1 3 2 2]] || 12/11 13/11 15/14 25/22 ||
||   || 1.2619 || 53.0408 || 23.1630 || [<1 1 2 2 3 3], <0 2 1 3 2 3]] || 12/11 14/13 15/13 25/22 ||
||   || 1.2920 || 43.2424 || 21.8817 || [<1 0 0 2 1 2], <0 2 3 1 3 2]] || 11/10 13/12 21/20 27/25 ||
||   || 1.2920 || 39.0609 || 21.8839 || [<1 0 0 2 2 3], <0 2 3 1 2 1]] || 12/11 14/13 21/20 27/25 ||
||   || 1.2920 || 42.8838 || 24.2613 || [<1 0 0 2 1 3], <0 2 3 1 3 1]] || 11/10 14/13 21/20 27/25 ||
||   || 1.3433 || 43.8182 || 20.8537 || [<1 0 4 6 5 7], <0 1 -1 -2 -1 -2]] || 11/10 14/13 16/15 26/25 ||
||   || 1.3433 || 48.6247 || 23.3373 || [<1 0 4 6 5 2], <0 1 -1 -2 -1 1]] || 11/10 13/12 16/15 21/20 ||
||   || 1.3433 || 41.3652 || 22.5640 || [<1 0 4 6 2 7], <0 1 -1 -2 1 -2]] || 12/11 14/13 16/15 26/25 ||
||   || 1.3512 || 38.8900 || 22.4912 || [<5 8 12 14 17 0], <0 0 0 0 0 1]] || 11/10 16/15 21/20 27/25 ||
||   || 1.4453 || 33.1105 || 21.4624 || [<5 8 12 14 0 19], <0 0 0 0 1 0]] || 14/13 16/15 26/25 27/25 ||
||   || 1.4993 || 37.8027 || 22.5820 || [<1 0 4 -2 2 -1], <0 1 -1 3 1 3]] || 12/11 14/13 16/15 27/26 ||
||   || 1.6091 || 33.9540 || 24.0271 || [<1 0 4 -2 2 7], <0 1 -1 3 1 -2]] || 12/11 16/15 26/25 35/33 ||
||   || 1.6181 || 43.6565 || 23.8050 || [<1 1 2 3 3 3], <0 2 1 -1 1 2]] || 11/10 13/12 21/20 25/24 ||

Original HTML content:

<html><head><title>Catalog of thirteen-limit rank two temperaments</title></head><body>Below is a <strong>complete</strong> listing of all 239 13-limit rank-two temperaments with <a class="wiki_link" href="/generator%20complexity">generator complexity</a> less than 40 and TE badness less than 0.025, obtained by the method discussed <a class="wiki_link" href="/The%20wedgie">here</a>. The TE error is multiplied by 1200 so that it can be thought of as cents, and the badness is multiplied by 1000. Some &quot;Junk&quot; temperaments of very low complexity and high error are listed below the main list, which is ordered by increasing generator complexity, with ties broken by TE complexity.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Temperament list"></a><!-- ws:end:WikiTextHeadingRule:0 -->Temperament list</h1>
 

<table class="wiki_table">
    <tr>
        <td>Name<br />
</td>
        <td>Complexity<br />
</td>
        <td>Error<br />
</td>
        <td>Badness<br />
</td>
        <td>Mapping<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Dicot%20family" target="_blank">Dicot</a> (extension)<br />
</td>
        <td>1.6214<br />
</td>
        <td>27.3134<br />
</td>
        <td>18.9555<br />
</td>
        <td>[&lt;1 1 2 2 2 2], &lt;0 2 1 3 5 6]]<br />
</td>
        <td>15/14 22/21 25/24 52/49<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Father%20family" target="_blank">Father</a> (extension)<br />
</td>
        <td>1.6967<br />
</td>
        <td>21.9084<br />
</td>
        <td>20.1335<br />
</td>
        <td>[&lt;1 0 4 -2 -3 7], &lt;0 1 -1 3 4 -2]]<br />
</td>
        <td>16/15 22/21 26/25 28/27<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.7156<br />
</td>
        <td>27.3628<br />
</td>
        <td>22.7796<br />
</td>
        <td>[&lt;1 1 2 2 2 4], &lt;0 2 1 3 5 -1]]<br />
</td>
        <td>15/14 22/21 25/24 40/39<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.7344<br />
</td>
        <td>27.8260<br />
</td>
        <td>21.2719<br />
</td>
        <td>[&lt;1 0 -4 -2 -6 -1], &lt;0 1 4 3 6 3]]<br />
</td>
        <td>14/13 21/20 27/26 45/44<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.7810<br />
</td>
        <td>27.5776<br />
</td>
        <td>24.7359<br />
</td>
        <td>[&lt;1 0 -4 -5 -6 -1], &lt;0 1 4 5 6 3]]<br />
</td>
        <td>15/14 22/21 27/26 40/39<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.7872<br />
</td>
        <td>36.0627<br />
</td>
        <td>24.9964<br />
</td>
        <td>[&lt;1 0 4 6 10 7], &lt;0 1 -1 -2 -4 -2]]<br />
</td>
        <td>14/13 16/15 26/25 35/33<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.8400<br />
</td>
        <td>30.6716<br />
</td>
        <td>23.4200<br />
</td>
        <td>[&lt;1 1 2 3 4 4], &lt;0 2 1 -1 -2 -1]]<br />
</td>
        <td>14/13 21/20 25/24 33/32<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.8400<br />
</td>
        <td>26.9815<br />
</td>
        <td>23.8284<br />
</td>
        <td>[&lt;1 1 2 2 4 4], &lt;0 2 1 3 -2 -1]]<br />
</td>
        <td>15/14 25/24 33/32 40/39<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.9230<br />
</td>
        <td>27.4422<br />
</td>
        <td>23.2705<br />
</td>
        <td>[&lt;1 0 7 6 5 10], &lt;0 1 -3 -2 -1 -4]]<br />
</td>
        <td>15/14 22/21 40/39 52/49<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.0118<br />
</td>
        <td>27.4831<br />
</td>
        <td>23.7844<br />
</td>
        <td>[&lt;1 0 -4 -2 5 -1], &lt;0 1 4 3 -1 3]]<br />
</td>
        <td>14/13 21/20 27/26 33/32<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Bug%20family" target="_blank">Beep</a> (extension)<br />
</td>
        <td>2.0235<br />
</td>
        <td>19.3072<br />
</td>
        <td>18.0832<br />
</td>
        <td>[&lt;1 0 0 2 -2 -1], &lt;0 2 3 1 7 6]]<br />
</td>
        <td>21/20 26/25 27/25 45/44<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.0521<br />
</td>
        <td>22.3720<br />
</td>
        <td>21.6827<br />
</td>
        <td>[&lt;1 0 4 -2 -3 -6], &lt;0 1 -1 3 4 6]]<br />
</td>
        <td>16/15 22/21 28/27 52/49<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.1027<br />
</td>
        <td>19.4190<br />
</td>
        <td>22.7850<br />
</td>
        <td>[&lt;1 0 0 2 5 6], &lt;0 2 3 1 -2 -3]]<br />
</td>
        <td>21/20 27/25 66/65 99/98<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.1372<br />
</td>
        <td>14.5611<br />
</td>
        <td>22.2357<br />
</td>
        <td>[&lt;3 0 7 -1 1 11], &lt;0 1 0 2 2 0]]<br />
</td>
        <td>26/25 36/35 45/44 56/55<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Porcupine%20family#Hystrix" target="_blank">Hystrix</a> (extension)<br />
</td>
        <td>2.1534<br />
</td>
        <td>17.2113<br />
</td>
        <td>19.8014<br />
</td>
        <td>[&lt;1 2 3 3 4 4], &lt;0 -3 -5 -1 -4 -2]]<br />
</td>
        <td>22/21 36/35 40/39 52/49<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.1534<br />
</td>
        <td>17.4180<br />
</td>
        <td>22.5573<br />
</td>
        <td>[&lt;5 8 0 14 6 7], &lt;0 0 1 0 1 1]]<br />
</td>
        <td>28/27 35/33 40/39 49/48<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Bug%20family#Pentoid" target="_blank">Pentoid</a> (extension)<br />
</td>
        <td>2.1996<br />
</td>
        <td>18.8797<br />
</td>
        <td>21.1593<br />
</td>
        <td>[&lt;1 0 0 2 5 -1], &lt;0 2 3 1 -2 6]]<br />
</td>
        <td>21/20 26/25 27/25 33/32<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Father" target="_blank">Father</a> variant<br />
</td>
        <td>2.2249<br />
</td>
        <td>19.9728<br />
</td>
        <td>21.1254<br />
</td>
        <td>[&lt;1 0 4 -2 10 7], &lt;0 1 -1 3 -4 -2]]<br />
</td>
        <td>16/15 26/25 28/27 77/75<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Pelogic%20family">Pelogic</a> (extension)<br />
</td>
        <td>2.2355<br />
</td>
        <td>17.0065<br />
</td>
        <td>21.5281<br />
</td>
        <td>[&lt;1 0 7 9 5 -1], &lt;0 1 -3 -4 -1 3]]<br />
</td>
        <td>21/20 27/26 33/32 65/64<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.2524<br />
</td>
        <td>18.4570<br />
</td>
        <td>22.2116<br />
</td>
        <td>[&lt;1 0 7 9 5 13], &lt;0 1 -3 -4 -1 -6]]<br />
</td>
        <td>21/20 26/25 33/32 45/44<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.4075<br />
</td>
        <td>17.3437<br />
</td>
        <td>21.8080<br />
</td>
        <td>[&lt;1 1 2 1 2 4], &lt;0 2 1 6 5 -1]]<br />
</td>
        <td>25/24 28/27 35/33 40/39<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.4120<br />
</td>
        <td>22.2679<br />
</td>
        <td>24.9369<br />
</td>
        <td>[&lt;1 0 4 11 10 7], &lt;0 1 -1 -5 -4 -2]]<br />
</td>
        <td>16/15 22/21 26/25 100/99<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.4321<br />
</td>
        <td>17.9441<br />
</td>
        <td>23.0236<br />
</td>
        <td>[&lt;1 1 2 1 2 1], &lt;0 2 1 6 5 9]]<br />
</td>
        <td>25/24 28/27 35/33 65/63<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Augmented%20family" target="_blank">August</a><br />
</td>
        <td>2.4321<br />
</td>
        <td>11.6244<br />
</td>
        <td>18.4482<br />
</td>
        <td>[&lt;3 0 7 -1 1 -3], &lt;0 1 0 2 2 3]]<br />
</td>
        <td>27/26 36/35 45/44 56/55<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Meantone%20family#Dominant-Arnold" target="_blank">Arnold</a><br />
</td>
        <td>2.4351<br />
</td>
        <td>20.2444<br />
</td>
        <td>23.3005<br />
</td>
        <td>[&lt;1 0 -4 6 5 -1], &lt;0 1 4 -2 -1 3]]<br />
</td>
        <td>22/21 27/26 33/32 40/39<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Meantone%20family#Dominant-Dominatrix" target="_blank">Dominatrix</a><br />
</td>
        <td>2.4468<br />
</td>
        <td>13.7371<br />
</td>
        <td>18.2887<br />
</td>
        <td>[&lt;1 0 -4 6 -6 -1], &lt;0 1 4 -2 6 3]]<br />
</td>
        <td>27/26 36/35 45/44 64/63<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Dicot%20family#Jamesbond" target="_blank">Jamesbond</a><br />
</td>
        <td>2.4935<br />
</td>
        <td>16.1224<br />
</td>
        <td>23.0035<br />
</td>
        <td>[&lt;7 11 16 0 24 26], &lt;0 0 0 1 0 0]]<br />
</td>
        <td>25/24 27/26 33/32 45/44<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Dicot%20family#Jamesbond" target="_blank">Septimal</a><br />
</td>
        <td>2.4935<br />
</td>
        <td>13.2598<br />
</td>
        <td>22.5694<br />
</td>
        <td>[&lt;7 11 16 0 24 6], &lt;0 0 0 1 0 1]]<br />
</td>
        <td>25/24 33/32 45/44 65/63<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Diminished" target="_blank">Diminished</a> variant<br />
</td>
        <td>2.5237<br />
</td>
        <td>17.3415<br />
</td>
        <td>21.6035<br />
</td>
        <td>[&lt;4 0 3 5 1 2], &lt;0 1 1 1 2 2]]<br />
</td>
        <td>22/21 26/25 36/35 50/49<br />
</td>
    </tr>
    <tr>
        <td>Diminished variant<br />
</td>
        <td>2.5237<br />
</td>
        <td>15.0507<br />
</td>
        <td>23.8852<br />
</td>
        <td>[&lt;4 0 3 5 14 2], &lt;0 1 1 1 0 2]]<br />
</td>
        <td>26/25 36/35 50/49 56/55<br />
</td>
    </tr>
    <tr>
        <td>Diminished variant<br />
</td>
        <td>2.5237<br />
</td>
        <td>11.9675<br />
</td>
        <td>19.5087<br />
</td>
        <td>[&lt;4 0 3 5 14 15], &lt;0 1 1 1 0 0]]<br />
</td>
        <td>36/35 40/39 50/49 66/65<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Trienstonic%20clan#Octokaidecal" target="_blank">Octokaidecal</a> variant<br />
</td>
        <td>2.5841<br />
</td>
        <td>16.7342<br />
</td>
        <td>22.5814<br />
</td>
        <td>[&lt;2 0 -5 -4 -6 1], &lt;0 1 3 3 4 2]]<br />
</td>
        <td>22/21 28/27 40/39 50/49<br />
</td>
    </tr>
    <tr>
        <td>Octokaidecal (extension)<br />
</td>
        <td>2.5841<br />
</td>
        <td>13.2207<br />
</td>
        <td>20.6424<br />
</td>
        <td>[&lt;2 0 -5 -4 7 1], &lt;0 1 3 3 0 2]]<br />
</td>
        <td>28/27 40/39 50/49 55/54<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2.6867<br />
</td>
        <td>18.7092<br />
</td>
        <td>22.7413<br />
</td>
        <td>[&lt;1 1 2 4 4 4], &lt;0 2 1 -4 -2 -1]]<br />
</td>
        <td>22/21 25/24 33/32 40/39<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Dicot%20family#Dichotic" target="_blank">Dichotic</a> (extension)<br />
</td>
        <td>2.8702<br />
</td>
        <td>14.1529<br />
</td>
        <td>21.6740<br />
</td>
        <td>[&lt;1 1 2 4 2 4], &lt;0 2 1 -4 5 -1]]<br />
</td>
        <td>25/24 40/39 45/44 65/63<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Decimal" target="_blank">Decimal</a> (extension)<br />
</td>
        <td>2.8906<br />
</td>
        <td>12.3389<br />
</td>
        <td>21.3256<br />
</td>
        <td>[&lt;2 0 3 4 -1 1], &lt;0 2 1 1 5 4]]<br />
</td>
        <td>25/24 45/44 49/48 78/77<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Archytas%20clan" target="_blank">Blacksmith </a>variant<br />
</td>
        <td>2.8906<br />
</td>
        <td>11.1408<br />
</td>
        <td>22.3247<br />
</td>
        <td>[&lt;5 8 0 14 -6 7], &lt;0 0 1 0 2 1]]<br />
</td>
        <td>28/27 40/39 49/48 66/65<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/pajara" target="_blank">Pajaric</a><br />
</td>
        <td>2.9846<br />
</td>
        <td>11.0657<br />
</td>
        <td>20.4605<br />
</td>
        <td>[&lt;2 0 11 12 7 17], &lt;0 1 -2 -2 0 -3]]<br />
</td>
        <td>40/39 45/44 50/49 56/55<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Armodue" target="_blank">Armodue</a> (extension)<br />
</td>
        <td>3.0731<br />
</td>
        <td>12.8903<br />
</td>
        <td>19.3512<br />
</td>
        <td>[&lt;1 0 7 -5 5 -1], &lt;0 1 -3 5 -1 3]]<br />
</td>
        <td>27/26 33/32 36/35 45/44<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Progression" target="_blank">Progression</a><br />
</td>
        <td>3.1546<br />
</td>
        <td>11.1466<br />
</td>
        <td>18.1575<br />
</td>
        <td>[&lt;1 1 2 2 3 3], &lt;0 5 3 7 4 6]]<br />
</td>
        <td>26/25 36/35 56/55 66/65<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Opossum" target="_blank">Opossum</a> variant<br />
</td>
        <td>3.2059<br />
</td>
        <td>14.1496<br />
</td>
        <td>24.4605<br />
</td>
        <td>[&lt;1 2 3 4 4 5], &lt;0 -3 -5 -9 -4 -10]]<br />
</td>
        <td>26/25 28/27 55/54 65/63<br />
</td>
    </tr>
    <tr>
        <td>Opossum<br />
</td>
        <td>3.2059<br />
</td>
        <td>10.9238<br />
</td>
        <td>19.3894<br />
</td>
        <td>[&lt;1 2 3 4 4 4], &lt;0 -3 -5 -9 -4 -2]]<br />
</td>
        <td>28/27 40/39 55/54 66/65<br />
</td>
    </tr>
    <tr>
        <td>12 &amp; 12f<br />
</td>
        <td>3.2429<br />
</td>
        <td>11.5467<br />
</td>
        <td>24.8352<br />
</td>
        <td>[&lt;12 19 28 34 42 0], &lt;0 0 0 0 0 1]]<br />
</td>
        <td>36/35 45/44 50/49 56/55<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Diminished" target="_blank">Diminished</a> variant<br />
</td>
        <td>3.4688<br />
</td>
        <td>11.0754<br />
</td>
        <td>22.8374<br />
</td>
        <td>[&lt;4 0 3 5 -5 -4], &lt;0 1 1 1 3 3]]<br />
</td>
        <td>27/26 36/35 45/44 50/49<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Meantone%20family#Godzilla-13-limit">Godzilla</a><br />
</td>
        <td>3.4688<br />
</td>
        <td>8.1712<br />
</td>
        <td>22.5029<br />
</td>
        <td>[&lt;1 0 -4 2 -6 -5], &lt;0 2 8 1 12 11]]<br />
</td>
        <td>45/44 49/48 78/77 81/80<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Meantone%20family#Septimal meantone-Meanundec">Meanundec</a><br />
</td>
        <td>3.5621<br />
</td>
        <td>12.3475<br />
</td>
        <td>24.2428<br />
</td>
        <td>[&lt;1 0 -4 -13 -6 -1], &lt;0 1 4 10 6 3]]<br />
</td>
        <td>27/26 40/39 45/44 56/55<br />
</td>
    </tr>
    <tr>
        <td>Blacksmith (extension)<br />
</td>
        <td>3.5987<br />
</td>
        <td>10.3814<br />
</td>
        <td>20.4976<br />
</td>
        <td>[&lt;5 8 0 14 29 7], &lt;0 0 1 0 -1 1]]<br />
</td>
        <td>28/27 40/39 49/48 55/54<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Augmented%20family#Triforce" target="_blank">Triforce</a><br />
</td>
        <td>3.7856<br />
</td>
        <td>7.9575<br />
</td>
        <td>20.2480<br />
</td>
        <td>[&lt;3 0 7 6 8 4], &lt;0 2 0 1 1 3]]<br />
</td>
        <td>49/48 56/55 66/65 77/75<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Kleismic%20family#Keemun-Darjeeling" target="_blank">Darjeeling</a> (extension)<br />
</td>
        <td>3.7856<br />
</td>
        <td>7.3788<br />
</td>
        <td>21.4453<br />
</td>
        <td>[&lt;1 0 1 2 0 0], &lt;0 6 5 3 13 14]]<br />
</td>
        <td>49/48 55/54 66/65 77/75<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Negri" target="_blank">Negri</a><br />
</td>
        <td>3.8157<br />
</td>
        <td>8.6891<br />
</td>
        <td>17.8329<br />
</td>
        <td>[&lt;1 2 2 3 4 4], &lt;0 -4 3 -2 -5 -3]]<br />
</td>
        <td>45/44 49/48 56/55 78/77<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Negric" target="_blank">Negric</a><br />
</td>
        <td>3.8157<br />
</td>
        <td>8.5618<br />
</td>
        <td>20.2047<br />
</td>
        <td>[&lt;1 2 2 3 3 4], &lt;0 -4 3 -2 4 -3]]<br />
</td>
        <td>33/32 49/48 65/64 91/90<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Pelogic%20family#Superpelog" target="_blank">Superpelog</a> (extension)<br />
</td>
        <td>3.8459<br />
</td>
        <td>10.9415<br />
</td>
        <td>22.4731<br />
</td>
        <td>[&lt;1 0 7 2 5 6], &lt;0 2 -6 1 -2 -3]]<br />
</td>
        <td>33/32 45/44 49/48 78/77<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>4.0235<br />
</td>
        <td>8.0673<br />
</td>
        <td>23.5937<br />
</td>
        <td>[&lt;1 0 -4 2 5 -5], &lt;0 2 8 1 -2 11]]<br />
</td>
        <td>33/32 49/48 55/54 91/90<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Augene" target="_blank">Augene</a><br />
</td>
        <td>4.0300<br />
</td>
        <td>8.4291<br />
</td>
        <td>20.7855<br />
</td>
        <td>[&lt;3 0 7 18 20 16], &lt;0 1 0 -2 -2 -1]]<br />
</td>
        <td>40/39 56/55 64/63 66/65<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Meantone%20family#meanenneadecal" target="_blank">Meanenneadecal</a><br />
</td>
        <td>4.0536<br />
</td>
        <td>7.5265<br />
</td>
        <td>21.1818<br />
</td>
        <td>[&lt;1 0 -4 -13 -6 -20], &lt;0 1 4 10 6 15]]<br />
</td>
        <td>45/44 56/55 78/77 81/80<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Dominant" target="_blank">Dominant</a><br />
</td>
        <td>4.1548<br />
</td>
        <td>9.0031<br />
</td>
        <td>24.1076<br />
</td>
        <td>[&lt;1 0 -4 6 13 18], &lt;0 1 4 -2 -6 -9]]<br />
</td>
        <td>36/35 56/55 64/63 66/65<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Porcupine" target="_blank">Porcupine</a> variant<br />
</td>
        <td>4.2906<br />
</td>
        <td>7.7242<br />
</td>
        <td>21.2764<br />
</td>
        <td>[&lt;1 2 3 2 4 4], &lt;0 -3 -5 6 -4 -2]]<br />
</td>
        <td>40/39 55/54 64/63 66/65<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Hedgehog" target="_blank">Hedgehog</a> (extension)<br />
</td>
        <td>4.3068<br />
</td>
        <td>7.9361<br />
</td>
        <td>21.5156<br />
</td>
        <td>[&lt;2 1 1 2 4 3], &lt;0 3 5 5 4 6]]<br />
</td>
        <td>50/49 55/54 65/63 99/98<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Kleismic%20family#Keemun" target="_blank">Keemun</a> variant<br />
</td>
        <td>4.3637<br />
</td>
        <td>6.3766<br />
</td>
        <td>22.7494<br />
</td>
        <td>[&lt;1 0 1 2 4 0], &lt;0 6 5 3 -2 14]]<br />
</td>
        <td>49/48 56/55 91/90 625/624<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Sensi" target="_blank">Sensi</a> variant<br />
</td>
        <td>4.6307<br />
</td>
        <td>7.4628<br />
</td>
        <td>23.2580<br />
</td>
        <td>[&lt;1 6 8 11 11 10], &lt;0 -7 -9 -13 -12 -10]]<br />
</td>
        <td>55/54 66/65 77/75 143/140<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Sensis" target="_blank">Sensis</a><br />
</td>
        <td>4.6307<br />
</td>
        <td>5.5229<br />
</td>
        <td>20.0172<br />
</td>
        <td>[&lt;1 6 8 11 6 10], &lt;0 -7 -9 -13 -4 -10]]<br />
</td>
        <td>56/55 78/77 91/90 100/99<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Meantone%20family" target="_blank">Meanenneadecal</a> variant<br />
</td>
        <td>4.6430<br />
</td>
        <td>8.6347<br />
</td>
        <td>24.7630<br />
</td>
        <td>[&lt;1 0 -4 -13 -6 10], &lt;0 1 4 10 6 -4]]<br />
</td>
        <td>45/44 56/55 65/64 81/80<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Pajara" target="_blank">Pajara</a> variant<br />
</td>
        <td>4.7306<br />
</td>
        <td>7.8062<br />
</td>
        <td>22.6765<br />
</td>
        <td>[&lt;2 0 11 12 26 17], &lt;0 1 -2 -2 -6 -3]]<br />
</td>
        <td>40/39 50/49 64/63 99/98<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Meantone%20family#injera" target="_blank">Injera</a><br />
</td>
        <td>4.8643<br />
</td>
        <td>6.7024<br />
</td>
        <td>21.5655<br />
</td>
        <td>[&lt;2 0 -8 -7 -12 -21], &lt;0 1 4 4 6 9]]<br />
</td>
        <td>45/44 50/49 78/77 99/98<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Meantone%20family#flattone" target="_blank">Flattone</a> variant<br />
</td>
        <td>4.9286<br />
</td>
        <td>8.2456<br />
</td>
        <td>24.9444<br />
</td>
        <td>[&lt;1 0 -4 17 5 10], &lt;0 1 4 -9 -1 -4]]<br />
</td>
        <td>33/32 55/54 65/64 105/104<br />
</td>
    </tr>
    <tr>
        <td>Flattone (extension)<br />
</td>
        <td>4.9403<br />
</td>
        <td>6.1445<br />
</td>
        <td>22.2597<br />
</td>
        <td>[&lt;1 0 -4 17 -6 10], &lt;0 1 4 -9 6 -4]]<br />
</td>
        <td>45/44 65/64 78/77 81/80<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Porcupine%20family#Nautilus" target="_blank">Nautilus</a><br />
</td>
        <td>5.1345<br />
</td>
        <td>5.6901<br />
</td>
        <td>22.2846<br />
</td>
        <td>[&lt;1 2 3 3 4 5], &lt;0 -6 -10 -3 -8 -19]]<br />
</td>
        <td>49/48 55/54 91/90 100/99<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link_ext" href="http://dictionary.reference.com/browse/goodness" rel="nofollow">Meantone</a><br />
</td>
        <td>5.2032<br />
</td>
        <td>4.3643<br />
</td>
        <td>18.0484<br />
</td>
        <td>[&lt;1 0 -4 -13 -25 -20], &lt;0 1 4 10 18 15]]<br />
</td>
        <td>66/65 81/80 99/98 105/104<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Archytas%20clan" target="_blank">Ringo</a><br />
</td>
        <td>5.3214<br />
</td>
        <td>5.7998<br />
</td>
        <td>22.6194<br />
</td>
        <td>[&lt;1 1 5 4 2 4], &lt;0 2 -9 -4 5 -1]]<br />
</td>
        <td>56/55 64/63 78/77 91/90<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Superpyth" target="_blank">Superpyth</a> (extension)<br />
</td>
        <td>5.3375<br />
</td>
        <td>5.1055<br />
</td>
        <td>24.6725<br />
</td>
        <td>[&lt;1 0 -12 6 -22 -17], &lt;0 1 9 -2 16 13]]<br />
</td>
        <td>64/63 78/77 91/90 100/99<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Augmented%20family#Augene-11-limit-Ogene">Ogene</a><br />
</td>
        <td>5.3801<br />
</td>
        <td>5.4596<br />
</td>
        <td>22.8903<br />
</td>
        <td>[&lt;3 0 7 18 20 -8], &lt;0 1 0 -2 -2 4]]<br />
</td>
        <td>56/55 64/63 91/90 100/99<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Meantone%20family#Undevigintone-13-limit" target="_blank">Undevigintone</a><br />
</td>
        <td>5.4922<br />
</td>
        <td>4.8990<br />
</td>
        <td>22.9331<br />
</td>
        <td>[&lt;19 30 44 53 0 70], &lt;0 0 0 0 1 0]]<br />
</td>
        <td>49/48 65/64 81/80 91/90<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Negroni" target="_blank">Negroni</a><br />
</td>
        <td>5.6280<br />
</td>
        <td>5.5412<br />
</td>
        <td>21.5588<br />
</td>
        <td>[&lt;1 2 2 3 5 4], &lt;0 -4 3 -2 -15 -3]]<br />
</td>
        <td>49/48 55/54 65/64 91/90<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>5.6784<br />
</td>
        <td>5.4793<br />
</td>
        <td>24.1428<br />
</td>
        <td>[&lt;9 0 21 11 17 19], &lt;0 1 0 1 1 1]]<br />
</td>
        <td>56/55 78/77 91/90 128/125<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Orwell" target="_blank">Blair</a><br />
</td>
        <td>5.7085<br />
</td>
        <td>5.5776<br />
</td>
        <td>23.0863<br />
</td>
        <td>[&lt;1 0 3 1 3 3], &lt;0 7 -3 8 2 3]]<br />
</td>
        <td>65/64 78/77 91/90 99/98<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Semicomma%20family" target="_blank">Winston</a><br />
</td>
        <td>5.7085<br />
</td>
        <td>4.3658<br />
</td>
        <td>19.9306<br />
</td>
        <td>[&lt;1 0 3 1 3 1], &lt;0 7 -3 8 2 12]]<br />
</td>
        <td>66/65 99/98 105/104 121/120<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Augmented%20family#Augene-11-limit-Agene">Agene</a><br />
</td>
        <td>5.9464<br />
</td>
        <td>5.4878<br />
</td>
        <td>23.1130<br />
</td>
        <td>[&lt;3 0 7 18 20 35], &lt;0 1 0 -2 -2 -5]]<br />
</td>
        <td>56/55 64/63 78/77 100/99<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Pajara" target="_blank">Pajara</a><br />
</td>
        <td>6.1261<br />
</td>
        <td>4.7671<br />
</td>
        <td>22.3268<br />
</td>
        <td>[&lt;2 0 11 12 26 36], &lt;0 1 -2 -2 -6 -9]]<br />
</td>
        <td>50/49 64/63 99/98 975/968<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Cassandra" target="_blank">Cassandra</a><br />
</td>
        <td>6.3059<br />
</td>
        <td>3.2191<br />
</td>
        <td>20.7493<br />
</td>
        <td>[&lt;1 0 15 25 32 37], &lt;0 1 -8 -14 -18 -21]]<br />
</td>
        <td>100/99 105/104 196/195 245/242<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Jubilismic%20clan#crepuscular%20" target="_blank">Crepuscular</a><br />
</td>
        <td>6.3093<br />
</td>
        <td>4.5686<br />
</td>
        <td>24.3679<br />
</td>
        <td>[&lt;2 2 3 4 6 6], &lt;0 5 7 7 4 6]]<br />
</td>
        <td>50/49 78/77 99/98 144/143<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Negril" target="_blank">Negril</a><br />
</td>
        <td>6.5706<br />
</td>
        <td>5.1756<br />
</td>
        <td>24.3832<br />
</td>
        <td>[&lt;1 2 2 3 2 4], &lt;0 -4 3 -2 14 -3]]<br />
</td>
        <td>49/48 65/64 91/90 875/858<br />
</td>
    </tr>
    <tr>
        <td>Modus<br />
</td>
        <td>6.7257<br />
</td>
        <td>4.1699<br />
</td>
        <td>23.8059<br />
</td>
        <td>[&lt;1 1 1 4 2 4], &lt;0 4 9 -8 10 -2]]<br />
</td>
        <td>64/63 78/77 100/99 144/143<br />
</td>
    </tr>
    <tr>
        <td>Lupercalia<br />
</td>
        <td>6.7470<br />
</td>
        <td>4.1905<br />
</td>
        <td>21.3278<br />
</td>
        <td>[&lt;1 1 2 3 3 3], &lt;0 9 5 -3 7 11]]<br />
</td>
        <td>66/65 105/104 121/120 126/125<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Superkleismic" target="_blank">Superkleismic</a><br />
</td>
        <td>6.7470<br />
</td>
        <td>3.2749<br />
</td>
        <td>21.4777<br />
</td>
        <td>[&lt;1 4 5 2 4 8], &lt;0 -9 -10 3 -2 -16]]<br />
</td>
        <td>100/99 105/104 245/242 1188/1183<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Nusecond" target="_blank">Nusecond</a><br />
</td>
        <td>6.9402<br />
</td>
        <td>4.0097<br />
</td>
        <td>23.3231<br />
</td>
        <td>[&lt;1 3 4 5 5 5], &lt;0 -11 -13 -17 -12 -10]]<br />
</td>
        <td>66/65 99/98 121/120 126/125<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Magic" target="_blank">Magic</a><br />
</td>
        <td>7.1768<br />
</td>
        <td>3.2665<br />
</td>
        <td>21.5095<br />
</td>
        <td>[&lt;1 0 2 -1 6 -2], &lt;0 5 1 12 -8 18]]<br />
</td>
        <td>100/99 105/104 144/143 196/195<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Miracle%20extensions" target="_blank">Miraculous</a><br />
</td>
        <td>7.3507<br />
</td>
        <td>2.7371<br />
</td>
        <td>18.6685<br />
</td>
        <td>[&lt;1 1 3 3 2 4], &lt;0 6 -7 -2 15 -3]]<br />
</td>
        <td>105/104 144/143 196/195 275/273<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Mohajira" target="_blank">Mohajira</a><br />
</td>
        <td>7.3637<br />
</td>
        <td>4.3193<br />
</td>
        <td>23.3878<br />
</td>
        <td>[&lt;1 1 0 6 2 4], &lt;0 2 8 -11 5 -1]]<br />
</td>
        <td>66/65 105/104 121/120 512/507<br />
</td>
    </tr>
    <tr>
        <td>Mothra<br />
</td>
        <td>7.4806<br />
</td>
        <td>3.6713<br />
</td>
        <td>23.9543<br />
</td>
        <td>[&lt;1 1 0 3 5 1], &lt;0 3 12 -1 -8 14]]<br />
</td>
        <td>81/80 99/98 105/104 144/143<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/W%C3%BCrschmidt" target="_blank">Würschmidt</a><br />
</td>
        <td>7.4927<br />
</td>
        <td>2.7652<br />
</td>
        <td>23.5928<br />
</td>
        <td>[&lt;1 7 3 15 17 1], &lt;0 -8 -1 -18 -20 4]]<br />
</td>
        <td>99/98 144/143 176/175 275/273<br />
</td>
    </tr>
    <tr>
        <td>Meanpop<br />
</td>
        <td>7.8114<br />
</td>
        <td>3.1263<br />
</td>
        <td>20.8828<br />
</td>
        <td>[&lt;1 0 -4 -13 24 -20], &lt;0 1 4 10 -13 15]]<br />
</td>
        <td>81/80 105/104 144/143 196/195<br />
</td>
    </tr>
    <tr>
        <td>Agora<br />
</td>
        <td>7.8369<br />
</td>
        <td>3.4913<br />
</td>
        <td>24.5215<br />
</td>
        <td>[&lt;1 3 8 6 7 14], &lt;0 -4 -16 -9 -10 -29]]<br />
</td>
        <td>81/80 99/98 105/104 121/120<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Marvel%20temperaments#Tritonic" target="_blank">Tritonic</a><br />
</td>
        <td>8.0189<br />
</td>
        <td>2.8102<br />
</td>
        <td>22.9934<br />
</td>
        <td>[&lt;1 4 -3 -3 2 -5], &lt;0 -5 11 12 3 18]]<br />
</td>
        <td>105/104 121/120 196/195 275/273<br />
</td>
    </tr>
    <tr>
        <td>Dwynwen<br />
</td>
        <td>8.0948<br />
</td>
        <td>2.9858<br />
</td>
        <td>23.4609<br />
</td>
        <td>[&lt;1 1 2 3 3 2], &lt;0 9 5 -3 7 26]]<br />
</td>
        <td>91/90 121/120 126/125 176/175<br />
</td>
    </tr>
    <tr>
        <td>Bohpier<br />
</td>
        <td>8.2021<br />
</td>
        <td>2.7870<br />
</td>
        <td>24.8637<br />
</td>
        <td>[&lt;1 0 0 0 2 2], &lt;0 13 19 23 12 14]]<br />
</td>
        <td>100/99 144/143 245/243 275/273<br />
</td>
    </tr>
    <tr>
        <td>Myna<br />
</td>
        <td>8.5778<br />
</td>
        <td>1.9478<br />
</td>
        <td>17.1255<br />
</td>
        <td>[&lt;1 9 9 8 22 0], &lt;0 -10 -9 -7 -25 5]]<br />
</td>
        <td>126/125 144/143 176/175 196/195<br />
</td>
    </tr>
    <tr>
        <td>Octacot<br />
</td>
        <td>8.8331<br />
</td>
        <td>2.6029<br />
</td>
        <td>23.2762<br />
</td>
        <td>[&lt;1 1 1 2 2 4], &lt;0 8 18 11 20 -4]]<br />
</td>
        <td>100/99 144/143 243/242 245/242<br />
</td>
    </tr>
    <tr>
        <td>Sensus<br />
</td>
        <td>8.9610<br />
</td>
        <td>2.9616<br />
</td>
        <td>20.7887<br />
</td>
        <td>[&lt;1 6 8 11 23 10], &lt;0 -7 -9 -13 -31 -10]]<br />
</td>
        <td>91/90 126/125 169/168 352/351<br />
</td>
    </tr>
    <tr>
        <td>Leapday<br />
</td>
        <td>9.0442<br />
</td>
        <td>2.8672<br />
</td>
        <td>24.7316<br />
</td>
        <td>[&lt;1 0 -31 -21 -14 -9], &lt;0 1 21 15 11 8]]<br />
</td>
        <td>91/90 121/120 169/168 441/440<br />
</td>
    </tr>
    <tr>
        <td>Cataclysmic<br />
</td>
        <td>9.2501<br />
</td>
        <td>2.4818<br />
</td>
        <td>22.5549<br />
</td>
        <td>[&lt;1 0 1 -3 -5 0], &lt;0 6 5 22 32 14]]<br />
</td>
        <td>99/98 169/168 176/175 275/273<br />
</td>
    </tr>
    <tr>
        <td>Diaschismic<br />
</td>
        <td>9.3690<br />
</td>
        <td>1.7525<br />
</td>
        <td>18.9259<br />
</td>
        <td>[&lt;2 0 11 31 45 55], &lt;0 1 -2 -8 -12 -15]]<br />
</td>
        <td>126/125 176/175 196/195 364/363<br />
</td>
    </tr>
    <tr>
        <td>Septimin<br />
</td>
        <td>9.5243<br />
</td>
        <td>2.7176<br />
</td>
        <td>23.1168<br />
</td>
        <td>[&lt;1 4 1 5 5 7], &lt;0 -11 6 -10 -7 -15]]<br />
</td>
        <td>105/104 144/143 196/195 245/242<br />
</td>
    </tr>
    <tr>
        <td>Witchcraft<br />
</td>
        <td>9.5391<br />
</td>
        <td>2.5946<br />
</td>
        <td>23.5472<br />
</td>
        <td>[&lt;1 0 2 -1 -7 -2], &lt;0 5 1 12 33 18]]<br />
</td>
        <td>105/104 196/195 245/243 1188/1183<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Orwell" target="_blank">Orwell</a><br />
</td>
        <td>9.5510<br />
</td>
        <td>2.3097<br />
</td>
        <td>19.7181<br />
</td>
        <td>[&lt;1 0 3 1 3 8], &lt;0 7 -3 8 2 -19]]<br />
</td>
        <td>99/98 121/120 176/175 275/273<br />
</td>
    </tr>
    <tr>
        <td>Bunya<br />
</td>
        <td>9.8019<br />
</td>
        <td>2.6925<br />
</td>
        <td>24.8861<br />
</td>
        <td>[&lt;1 1 1 -1 2 4], &lt;0 4 9 26 10 -2]]<br />
</td>
        <td>100/99 144/143 243/242 275/273<br />
</td>
    </tr>
    <tr>
        <td>Thuja<br />
</td>
        <td>10.7770<br />
</td>
        <td>1.9835<br />
</td>
        <td>22.8384<br />
</td>
        <td>[&lt;1 8 5 -2 4 16], &lt;0 -12 -5 9 -1 -23]]<br />
</td>
        <td>126/125 144/143 176/175 364/363<br />
</td>
    </tr>
    <tr>
        <td>Alicorn<br />
</td>
        <td>10.7943<br />
</td>
        <td>1.9579<br />
</td>
        <td>23.6666<br />
</td>
        <td>[&lt;1 2 3 4 3 5], &lt;0 -8 -13 -23 9 -25]]<br />
</td>
        <td>126/125 144/143 196/195 676/675<br />
</td>
    </tr>
    <tr>
        <td>Hemififths<br />
</td>
        <td>11.0372<br />
</td>
        <td>1.5814<br />
</td>
        <td>19.0896<br />
</td>
        <td>[&lt;1 1 -5 -1 2 4], &lt;0 2 25 13 5 -1]]<br />
</td>
        <td>144/143 196/195 243/242 364/363<br />
</td>
    </tr>
    <tr>
        <td>Valentino<br />
</td>
        <td>11.0831<br />
</td>
        <td>2.0505<br />
</td>
        <td>20.6653<br />
</td>
        <td>[&lt;1 1 2 3 3 5], &lt;0 9 5 -3 7 -20]]<br />
</td>
        <td>121/120 126/125 176/175 196/195<br />
</td>
    </tr>
    <tr>
        <td>Hendec<br />
</td>
        <td>11.2093<br />
</td>
        <td>1.1966<br />
</td>
        <td>17.7067<br />
</td>
        <td>[&lt;2 5 8 5 6 8], &lt;0 -6 -11 2 3 -2]]<br />
</td>
        <td>169/168 325/324 364/363 1716/1715<br />
</td>
    </tr>
    <tr>
        <td>Bisemidim<br />
</td>
        <td>11.3567<br />
</td>
        <td>1.8575<br />
</td>
        <td>23.8769<br />
</td>
        <td>[&lt;2 1 2 2 5 5], &lt;0 9 11 15 8 10]]<br />
</td>
        <td>126/125 144/143 196/195 364/363<br />
</td>
    </tr>
    <tr>
        <td>Infraorwell<br />
</td>
        <td>11.3869<br />
</td>
        <td>1.9483<br />
</td>
        <td>23.6834<br />
</td>
        <td>[&lt;1 14 0 16 12 20], &lt;0 -16 3 -17 -11 -21]]<br />
</td>
        <td>144/143 176/175 196/195 364/363<br />
</td>
    </tr>
    <tr>
        <td>Garibaldi<br />
</td>
        <td>11.6354<br />
</td>
        <td>1.4775<br />
</td>
        <td>20.6757<br />
</td>
        <td>[&lt;1 0 15 25 -33 -28], &lt;0 1 -8 -14 23 20]]<br />
</td>
        <td>225/224 275/273 325/324 385/384<br />
</td>
    </tr>
    <tr>
        <td>Hitchcock<br />
</td>
        <td>11.6543<br />
</td>
        <td>1.9118<br />
</td>
        <td>22.4484<br />
</td>
        <td>[&lt;1 3 6 -2 6 2], &lt;0 -5 -13 17 -9 6]]<br />
</td>
        <td>121/120 169/168 176/175 325/324<br />
</td>
    </tr>
    <tr>
        <td>Quartonic<br />
</td>
        <td>11.8517<br />
</td>
        <td>1.7776<br />
</td>
        <td>23.8747<br />
</td>
        <td>[&lt;1 2 3 3 5 4], &lt;0 -11 -18 -5 -41 -8]]<br />
</td>
        <td>169/168 176/175 325/324 540/539<br />
</td>
    </tr>
    <tr>
        <td>Buzzard<br />
</td>
        <td>12.3421<br />
</td>
        <td>1.1747<br />
</td>
        <td>18.8425<br />
</td>
        <td>[&lt;1 0 -6 4 -12 -7], &lt;0 4 21 -3 39 27]]<br />
</td>
        <td>176/175 351/350 676/675 847/845<br />
</td>
    </tr>
    <tr>
        <td>Echidna<br />
</td>
        <td>12.4332<br />
</td>
        <td>1.4956<br />
</td>
        <td>23.6786<br />
</td>
        <td>[&lt;2 1 9 2 12 19], &lt;0 3 -6 5 -7 -16]]<br />
</td>
        <td>176/175 351/350 364/363 540/539<br />
</td>
    </tr>
    <tr>
        <td>Mystery<br />
</td>
        <td>12.4896<br />
</td>
        <td>1.0869<br />
</td>
        <td>18.5912<br />
</td>
        <td>[&lt;29 46 0 14 33 40], &lt;0 0 1 1 1 1]]<br />
</td>
        <td>196/195 352/351 364/363 676/675<br />
</td>
    </tr>
    <tr>
        <td>Sruti<br />
</td>
        <td>12.7068<br />
</td>
        <td>1.8820<br />
</td>
        <td>23.7911<br />
</td>
        <td>[&lt;2 0 11 -15 -1 9], &lt;0 2 -4 13 5 -1]]<br />
</td>
        <td>144/143 176/175 351/350 676/675<br />
</td>
    </tr>
    <tr>
        <td>Compton<br />
</td>
        <td>12.9714<br />
</td>
        <td>1.2359<br />
</td>
        <td>21.8524<br />
</td>
        <td>[&lt;12 19 0 -22 -42 -67], &lt;0 0 1 2 3 4]]<br />
</td>
        <td>225/224 351/350 364/363 441/440<br />
</td>
    </tr>
    <tr>
        <td>Lizard<br />
</td>
        <td>12.9759<br />
</td>
        <td>1.3242<br />
</td>
        <td>21.7807<br />
</td>
        <td>[&lt;2 1 5 2 8 11], &lt;0 6 -1 10 -3 -10]]<br />
</td>
        <td>225/224 351/350 364/363 385/384<br />
</td>
    </tr>
    <tr>
        <td>Ennealimnic<br />
</td>
        <td>13.0079<br />
</td>
        <td>1.3158<br />
</td>
        <td>20.6966<br />
</td>
        <td>[&lt;9 1 1 12 -2 20], &lt;0 2 3 2 5 2]]<br />
</td>
        <td>169/168 243/242 325/324 441/440<br />
</td>
    </tr>
    <tr>
        <td>Marvolo<br />
</td>
        <td>13.0470<br />
</td>
        <td>1.3528<br />
</td>
        <td>21.4699<br />
</td>
        <td>[&lt;1 2 1 1 2 3], &lt;0 -6 19 26 21 10]]<br />
</td>
        <td>169/168 225/224 364/363 441/440<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Rodan">Rodan</a><br />
</td>
        <td>13.2667<br />
</td>
        <td>1.3261<br />
</td>
        <td>18.4483<br />
</td>
        <td>[&lt;1 1 -1 3 6 8], &lt;0 3 17 -1 -13 -22]]<br />
</td>
        <td>196/195 245/243 352/351 364/363<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Miracle%20extensions" target="_blank">Manna</a><br />
</td>
        <td>13.2838<br />
</td>
        <td>1.1773<br />
</td>
        <td>17.0122<br />
</td>
        <td>[&lt;1 1 3 3 2 0], &lt;0 6 -7 -2 15 38]]<br />
</td>
        <td>225/224 243/242 325/324 385/384<br />
</td>
    </tr>
    <tr>
        <td>Tritikleismic<br />
</td>
        <td>13.4940<br />
</td>
        <td>.8133<br />
</td>
        <td>15.6523<br />
</td>
        <td>[&lt;3 0 3 10 8 0], &lt;0 6 5 -2 3 14]]<br />
</td>
        <td>325/324 364/363 441/440 625/624<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Miracle%20extensions" target="_blank">Benediction</a><br />
</td>
        <td>13.5241<br />
</td>
        <td>1.0143<br />
</td>
        <td>15.7152<br />
</td>
        <td>[&lt;1 1 3 3 2 7], &lt;0 6 -7 -2 15 -34]]<br />
</td>
        <td>225/224 243/242 351/350 441/440<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Catakleismic">Catakleismic</a><br />
</td>
        <td>13.9069<br />
</td>
        <td>1.1908<br />
</td>
        <td>16.8832<br />
</td>
        <td>[&lt;1 0 1 -3 9 0], &lt;0 6 5 22 -21 14]]<br />
</td>
        <td>169/168 225/224 325/324 385/384<br />
</td>
    </tr>
    <tr>
        <td>Qilin<br />
</td>
        <td>14.1642<br />
</td>
        <td>1.6395<br />
</td>
        <td>22.8419<br />
</td>
        <td>[&lt;1 2 3 4 6 5], &lt;0 -8 -13 -23 -49 -25]]<br />
</td>
        <td>126/125 176/175 196/195 2200/2197<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Harry">Harry</a><br />
</td>
        <td>14.6430<br />
</td>
        <td>.7511<br />
</td>
        <td>13.0465<br />
</td>
        <td>[&lt;2 4 7 7 9 11], &lt;0 -6 -17 -10 -15 -26]]<br />
</td>
        <td>243/242 351/350 441/440 676/675<br />
</td>
    </tr>
    <tr>
        <td>Semimiracle<br />
</td>
        <td>14.7014<br />
</td>
        <td>1.3334<br />
</td>
        <td>24.6222<br />
</td>
        <td>[&lt;2 2 6 6 4 7], &lt;0 6 -7 -2 15 2]]<br />
</td>
        <td>169/168 225/224 243/242 385/384<br />
</td>
    </tr>
    <tr>
        <td>Catalytic<br />
</td>
        <td>14.7423<br />
</td>
        <td>1.3244<br />
</td>
        <td>22.3368<br />
</td>
        <td>[&lt;1 0 1 -3 -10 0], &lt;0 6 5 22 51 14]]<br />
</td>
        <td>169/168 225/224 325/324 1716/1715<br />
</td>
    </tr>
    <tr>
        <td>Octopus<br />
</td>
        <td>15.1423<br />
</td>
        <td>1.1002<br />
</td>
        <td>21.6786<br />
</td>
        <td>[&lt;8 1 3 3 16 14], &lt;0 3 4 5 3 4]]<br />
</td>
        <td>169/168 325/324 364/363 540/539<br />
</td>
    </tr>
    <tr>
        <td>Enneaportent<br />
</td>
        <td>15.2328<br />
</td>
        <td>1.3133<br />
</td>
        <td>22.3223<br />
</td>
        <td>[&lt;9 0 28 11 24 19], &lt;0 2 -1 2 1 2]]<br />
</td>
        <td>169/168 225/224 364/363 1716/1715<br />
</td>
    </tr>
    <tr>
        <td>Bikleismic<br />
</td>
        <td>15.6731<br />
</td>
        <td>1.3198<br />
</td>
        <td>21.8142<br />
</td>
        <td>[&lt;2 0 2 -6 -1 0], &lt;0 6 5 22 15 14]]<br />
</td>
        <td>169/168 225/224 243/242 325/324<br />
</td>
    </tr>
    <tr>
        <td>Hemithirds<br />
</td>
        <td>15.6794<br />
</td>
        <td>1.1293<br />
</td>
        <td>21.7376<br />
</td>
        <td>[&lt;1 4 2 2 7 0], &lt;0 -15 2 5 -22 23]]<br />
</td>
        <td>196/195 352/351 1001/1000 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>Gizzard<br />
</td>
        <td>15.7868<br />
</td>
        <td>.9255<br />
</td>
        <td>20.2519<br />
</td>
        <td>[&lt;2 1 5 2 8 -2], &lt;0 6 -1 10 -3 26]]<br />
</td>
        <td>225/224 325/324 385/384 1573/1568<br />
</td>
    </tr>
    <tr>
        <td>Coditone<br />
</td>
        <td>16.1784<br />
</td>
        <td>1.1526<br />
</td>
        <td>24.3522<br />
</td>
        <td>[&lt;1 6 3 13 -3 2], &lt;0 -13 -2 -30 19 5]]<br />
</td>
        <td>225/224 351/350 385/384 847/845<br />
</td>
    </tr>
    <tr>
        <td>Bison<br />
</td>
        <td>17.5050<br />
</td>
        <td>.7645<br />
</td>
        <td>23.5039<br />
</td>
        <td>[&lt;2 5 7 3 3 4], &lt;0 -7 -9 10 15 13]]<br />
</td>
        <td>351/350 364/363 441/440 10985/10976<br />
</td>
    </tr>
    <tr>
        <td>Mirkat<br />
</td>
        <td>17.8357<br />
</td>
        <td>.6381<br />
</td>
        <td>18.6316<br />
</td>
        <td>[&lt;3 2 1 2 9 1], &lt;0 6 13 14 3 22]]<br />
</td>
        <td>351/350 540/539 676/675 1375/1372<br />
</td>
    </tr>
    <tr>
        <td>Subfourth<br />
</td>
        <td>18.4588<br />
</td>
        <td>.9671<br />
</td>
        <td>23.7996<br />
</td>
        <td>[&lt;1 0 17 4 11 16], &lt;0 4 -37 -3 -19 -31]]<br />
</td>
        <td>352/351 364/363 540/539 676/675<br />
</td>
    </tr>
    <tr>
        <td>Mintone<br />
</td>
        <td>18.5191<br />
</td>
        <td>.9414<br />
</td>
        <td>21.8493<br />
</td>
        <td>[&lt;1 5 9 7 12 11], &lt;0 -22 -43 -27 -55 -47]]<br />
</td>
        <td>243/242 351/350 441/440 1188/1183<br />
</td>
    </tr>
    <tr>
        <td>Hemiseven<br />
</td>
        <td>18.5600<br />
</td>
        <td>.8367<br />
</td>
        <td>21.9005<br />
</td>
        <td>[&lt;1 4 14 2 -5 19], &lt;0 -6 -29 2 21 -38]]<br />
</td>
        <td>351/350 385/384 441/440 676/675<br />
</td>
    </tr>
    <tr>
        <td>Quadritikleismic<br />
</td>
        <td>18.6111<br />
</td>
        <td>.6278<br />
</td>
        <td>18.7309<br />
</td>
        <td>[&lt;4 0 4 7 17 0], &lt;0 6 5 4 -3 14]]<br />
</td>
        <td>325/324 385/384 625/624 1573/1568<br />
</td>
    </tr>
    <tr>
        <td><a class="wiki_link" href="/Sqrtphi">Sqrtphi</a><br />
</td>
        <td>18.9279<br />
</td>
        <td>.7746<br />
</td>
        <td>20.0402<br />
</td>
        <td>[&lt;1 12 11 16 17 28], &lt;0 -30 -25 -38 -39 -70]]<br />
</td>
        <td>325/324 364/363 625/624 1375/1372<br />
</td>
    </tr>
    <tr>
        <td>Supers<br />
</td>
        <td>19.8111<br />
</td>
        <td>.7880<br />
</td>
        <td>21.6449<br />
</td>
        <td>[&lt;2 1 -12 2 -9 -2], &lt;0 3 23 5 22 13]]<br />
</td>
        <td>352/351 540/539 729/728 1575/1573<br />
</td>
    </tr>
    <tr>
        <td>Kwai<br />
</td>
        <td>19.8873<br />
</td>
        <td>.7677<br />
</td>
        <td>24.5550<br />
</td>
        <td>[&lt;1 0 -50 -40 32 37], &lt;0 1 33 27 -18 -21]]<br />
</td>
        <td>352/351 540/539 729/728 1375/1372<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>19.9476<br />
</td>
        <td>.8865<br />
</td>
        <td>24.3714<br />
</td>
        <td>[&lt;1 0 1 -12 -5 0], &lt;0 6 5 56 32 14]]<br />
</td>
        <td>325/324352/351 364/363 625/624<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>20.2345<br />
</td>
        <td>.6664<br />
</td>
        <td>21.6939<br />
</td>
        <td>[&lt;1 13 17 13 32 9], &lt;0 -28 -36 -25 -70 -13]]<br />
</td>
        <td>243/242 351/350 441/440 10985/10976<br />
</td>
    </tr>
    <tr>
        <td>Countercata<br />
</td>
        <td>20.2925<br />
</td>
        <td>.8135<br />
</td>
        <td>20.1564<br />
</td>
        <td>[&lt;1 0 1 11 -5 0], &lt;0 6 5 -31 32 14]]<br />
</td>
        <td>325/324 352/351 385/384 625/624<br />
</td>
    </tr>
    <tr>
        <td>Ketchup<br />
</td>
        <td>20.4870<br />
</td>
        <td>.8412<br />
</td>
        <td>24.8236<br />
</td>
        <td>[&lt;2 3 4 6 7 8], &lt;0 4 15 -9 -2 -14]]<br />
</td>
        <td>325/324 352/351 847/845 1331/1323<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21.5338<br />
</td>
        <td>.5670<br />
</td>
        <td>21.1879<br />
</td>
        <td>[&lt;2 0 -35 -15 -47 -37], &lt;0 2 25 13 34 28]]<br />
</td>
        <td>352/351 676/675 847/845 1716/1715<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21.8078<br />
</td>
        <td>.7473<br />
</td>
        <td>24.8390<br />
</td>
        <td>[&lt;1 9 2 7 17 -5], &lt;0 -23 1 -13 -42 27]]<br />
</td>
        <td>352/351 540/539 625/624 1375/1372<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>22.1019<br />
</td>
        <td>.7291<br />
</td>
        <td>23.0740<br />
</td>
        <td>[&lt;1 15 4 7 37 -29], &lt;0 -16 -2 -5 -40 39]]<br />
</td>
        <td>243/242 351/350 441/440 3584/3575<br />
</td>
    </tr>
    <tr>
        <td>Ekadash<br />
</td>
        <td>22.2725<br />
</td>
        <td>.5694<br />
</td>
        <td>20.3814<br />
</td>
        <td>[&lt;2 5 8 5 6 19], &lt;0 -6 -11 2 3 -38]]<br />
</td>
        <td>385/384441/440 625/624 729/728<br />
</td>
    </tr>
    <tr>
        <td>Arch<br />
</td>
        <td>23.8240<br />
</td>
        <td>.5728<br />
</td>
        <td>19.5041<br />
</td>
        <td>[&lt;1 2 2 2 3 4], &lt;0 -18 14 35 20 -13]]<br />
</td>
        <td>364/363 441/440 676/675 3136/3125<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>24.3209<br />
</td>
        <td>.6708<br />
</td>
        <td>22.3961<br />
</td>
        <td>[&lt;1 1 7 5 2 -2], &lt;0 4 -32 -15 10 39]]<br />
</td>
        <td>243/242364/363 441/440 105644/105625<br />
</td>
    </tr>
    <tr>
        <td>Ennealimnic<br />
</td>
        <td>24.3214<br />
</td>
        <td>.7265<br />
</td>
        <td>23.2502<br />
</td>
        <td>[&lt;9 1 1 12 -2 -33], &lt;0 2 3 2 5 10]]<br />
</td>
        <td>243/242 364/363 441/440 625/624<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>24.7013<br />
</td>
        <td>.6592<br />
</td>
        <td>23.9401<br />
</td>
        <td>[&lt;1 6 8 17 -6 16], &lt;0 -14 -18 -45 30 -39]]<br />
</td>
        <td>351/350 540/539 676/675 3136/3125<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>24.7390<br />
</td>
        <td>.6202<br />
</td>
        <td>21.6356<br />
</td>
        <td>[&lt;1 16 8 -2 17 12], &lt;0 -33 -13 11 -31 -19]]<br />
</td>
        <td>385/384 441/440 625/624 847/845<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>25.1580<br />
</td>
        <td>.5751<br />
</td>
        <td>22.9233<br />
</td>
        <td>[&lt;3 0 26 56 8 23], &lt;0 2 -8 -20 1 -5]]<br />
</td>
        <td>352/351 676/675 847/845 3025/3024<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>25.4024<br />
</td>
        <td>.5479<br />
</td>
        <td>23.8618<br />
</td>
        <td>[&lt;1 2 3 3 4 5], &lt;0 -30 -49 -14 -39 -94]]<br />
</td>
        <td>364/363 441/440 676/675 4375/4374<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>26.0158<br />
</td>
        <td>.4227<br />
</td>
        <td>23.9484<br />
</td>
        <td>[&lt;10 0 -56 -67 -108 37], &lt;0 1 5 6 9 0]]<br />
</td>
        <td>441/440 729/728 1001/1000 4225/4224<br />
</td>
    </tr>
    <tr>
        <td>Hemischis<br />
</td>
        <td>26.2491<br />
</td>
        <td>.5658<br />
</td>
        <td>20.8155<br />
</td>
        <td>[&lt;1 0 15 -17 51 14], &lt;0 2 -16 25 -60 -13]]<br />
</td>
        <td>351/350 540/539 676/675 40656/40625<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>26.6197<br />
</td>
        <td>.5984<br />
</td>
        <td>24.4449<br />
</td>
        <td>[&lt;1 28 -7 30 19 34], &lt;0 -34 12 -35 -20 -39]]<br />
</td>
        <td>364/363 540/539 676/675 3584/3575<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>27.1080<br />
</td>
        <td>.4537<br />
</td>
        <td>22.8872<br />
</td>
        <td>[&lt;2 4 4 7 6 11], &lt;0 -9 7 -15 10 -39]]<br />
</td>
        <td>540/539 729/728 4000/3993 21168/21125<br />
</td>
    </tr>
    <tr>
        <td>Pogo<br />
</td>
        <td>27.6987<br />
</td>
        <td>.3280<br />
</td>
        <td>17.5141<br />
</td>
        <td>[&lt;2 1 22 2 25 -2], &lt;0 3 -24 5 -25 13]]<br />
</td>
        <td>540/539 729/728 4000/3993 10985/10976<br />
</td>
    </tr>
    <tr>
        <td>Octoid<br />
</td>
        <td>28.1048<br />
</td>
        <td>.3789<br />
</td>
        <td>15.2738<br />
</td>
        <td>[&lt;8 1 3 3 16 -21], &lt;0 3 4 5 3 13]]<br />
</td>
        <td>540/539 625/624 1375/1372 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Hemiennealimmal<br />
</td>
        <td>29.1857<br />
</td>
        <td>.2310<br />
</td>
        <td>12.5045<br />
</td>
        <td>[&lt;18 0 -1 22 48 -19], &lt;0 2 3 2 1 6]]<br />
</td>
        <td>676/675 1001/1000 1716/1715 3025/3024<br />
</td>
    </tr>
    <tr>
        <td>Quanharuk<br />
</td>
        <td>33.1711<br />
</td>
        <td>.3531<br />
</td>
        <td>21.3919<br />
</td>
        <td>[&lt;1 0 15 12 -7 -15], &lt;0 5 -40 -29 33 59]]<br />
</td>
        <td>540/539 1375/1372 4096/4095 6656/6655<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>33.4393<br />
</td>
        <td>.3824<br />
</td>
        <td>21.1266<br />
</td>
        <td>[&lt;1 34 17 34 53 30], &lt;0 -53 -24 -51 -81 -43]]<br />
</td>
        <td>540/539 625/624 1375/1372 2200/2197<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>33.5315<br />
</td>
        <td>.2302<br />
</td>
        <td>19.4943<br />
</td>
        <td>[&lt;1 48 5 76 107 76], &lt;0 -52 -3 -82 -116 -81]]<br />
</td>
        <td>676/675 1716/1715 3025/3024 4225/4224<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>33.6103<br />
</td>
        <td>.3698<br />
</td>
        <td>24.8815<br />
</td>
        <td>[&lt;1 11 38 37 -1 26], &lt;0 -19 -72 -69 9 -45]]<br />
</td>
        <td>540/539 729/728 1375/1372 2200/2197<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>34.4541<br />
</td>
        <td>.3541<br />
</td>
        <td>20.1941<br />
</td>
        <td>[&lt;2 1 -5 2 -2 -2], &lt;0 9 40 15 37 39]]<br />
</td>
        <td>540/539 729/728 1575/1573 2200/2197<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>34.6430<br />
</td>
        <td>.3993<br />
</td>
        <td>23.3876<br />
</td>
        <td>[&lt;2 14 6 9 -10 25], &lt;0 -16 -2 -5 25 -26]]<br />
</td>
        <td>676/675 1001/1000 1716/1715 3136/3125<br />
</td>
    </tr>
    <tr>
        <td>Abigail<br />
</td>
        <td>35.2653<br />
</td>
        <td>.1098<br />
</td>
        <td>8.8558<br />
</td>
        <td>[&lt;2 7 13 -1 1 -2], &lt;0 -11 -24 19 17 27]]<br />
</td>
        <td>1716/1715 2080/2079 3025/3024 4096/4095<br />
</td>
    </tr>
    <tr>
        <td>Decoid<br />
</td>
        <td>35.7438<br />
</td>
        <td>.2238<br />
</td>
        <td>13.4746<br />
</td>
        <td>[&lt;10 0 47 36 98 37], &lt;0 2 -3 -1 -8 0]]<br />
</td>
        <td>676/675 1001/1000 1716/1715 4225/4224<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>36.1768<br />
</td>
        <td>.2313<br />
</td>
        <td>16.2821<br />
</td>
        <td>[&lt;2 4 9 8 12 13], &lt;0 -8 -42 -23 -49 -54]]<br />
</td>
        <td>676/675 1001/1000 1716/1715 10648/10647<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>36.3331<br />
</td>
        <td>.2325<br />
</td>
        <td>18.6469<br />
</td>
        <td>[&lt;3 0 -18 -32 8 -21], &lt;0 4 21 34 2 27]]<br />
</td>
        <td>676/675 1001/1000 3025/3024 10985/10976<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>37.3448<br />
</td>
        <td>.2265<br />
</td>
        <td>20.4161<br />
</td>
        <td>[&lt;2 12 20 6 5 17], &lt;0 -23 -40 -1 5 -25]]<br />
</td>
        <td>1716/1715 2080/2079 2200/2197 3025/3024<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>37.8845<br />
</td>
        <td>.3814<br />
</td>
        <td>23.6158<br />
</td>
        <td>[&lt;1 0 15 -59 135 56], &lt;0 1 -8 39 -83 -33]]<br />
</td>
        <td>540/539 625/624 729/728 2200/2197<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>38.3738<br />
</td>
        <td>.2790<br />
</td>
        <td>22.4115<br />
</td>
        <td>[&lt;1 27 54 35 6 124], &lt;0 -30 -61 -38 -3 -142]]<br />
</td>
        <td>729/728 1001/1000 1716/1715 3025/3024<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>38.6520<br />
</td>
        <td>.2333<br />
</td>
        <td>15.5572<br />
</td>
        <td>[&lt;3 2 8 16 9 8], &lt;0 8 -3 -22 4 9]]<br />
</td>
        <td>676/675 1001/1000 3025/3024 4096/4095<br />
</td>
    </tr>
    <tr>
        <td>Deca<br />
</td>
        <td>39.1828<br />
</td>
        <td>.1817<br />
</td>
        <td>16.8103<br />
</td>
        <td>[&lt;10 4 9 2 18 37], &lt;0 5 6 11 7 0]]<br />
</td>
        <td>1001/1000 3025/3024 4225/4224 4375/4374<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>39.4548<br />
</td>
        <td>.2872<br />
</td>
        <td>20.8877<br />
</td>
        <td>[&lt;1 29 33 25 25 99], &lt;0 -42 -47 -34 -33 -146]]<br />
</td>
        <td>625/624 1575/1573 2080/2079 2401/2400<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Junk temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Junk temperaments</h1>
 

<table class="wiki_table">
    <tr>
        <td>Name<br />
</td>
        <td>Complexity<br />
</td>
        <td>Error<br />
</td>
        <td>Badness<br />
</td>
        <td>Mapping<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.2702<br />
</td>
        <td>336.2129<br />
</td>
        <td>17.8545<br />
</td>
        <td>[&lt;1 2 2 3 3 0], &lt;0 0 0 0 0 1]]<br />
</td>
        <td>4/3 5/3 7/6 11/6<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.2891<br />
</td>
        <td>283.7695<br />
</td>
        <td>17.6578<br />
</td>
        <td>[&lt;1 2 2 3 0 4], &lt;0 0 0 0 1 0]]<br />
</td>
        <td>4/3 5/3 7/6 13/9<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.2891<br />
</td>
        <td>287.8202<br />
</td>
        <td>24.1056<br />
</td>
        <td>[&lt;1 2 2 3 0 0], &lt;0 0 0 0 1 1]]<br />
</td>
        <td>4/3 5/3 7/6 13/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.5405<br />
</td>
        <td>108.8851<br />
</td>
        <td>16.3368<br />
</td>
        <td>[&lt;2 3 5 6 7 0], &lt;0 0 0 0 0 1]]<br />
</td>
        <td>6/5 8/7 9/7 11/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.5781<br />
</td>
        <td>130.7392<br />
</td>
        <td>21.2974<br />
</td>
        <td>[&lt;2 3 5 6 0 7], &lt;0 0 0 0 1 0]]<br />
</td>
        <td>6/5 8/7 9/7 13/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.6309<br />
</td>
        <td>149.7414<br />
</td>
        <td>19.8124<br />
</td>
        <td>[&lt;1 0 1 1 2 2], &lt;0 1 1 1 1 1]]<br />
</td>
        <td>6/5 7/5 11/10 13/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.6309<br />
</td>
        <td>145.2377<br />
</td>
        <td>21.5971<br />
</td>
        <td>[&lt;1 0 2 1 2 2], &lt;0 1 0 1 1 1]]<br />
</td>
        <td>5/4 7/6 12/11 13/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.6309<br />
</td>
        <td>135.7653<br />
</td>
        <td>21.7806<br />
</td>
        <td>[&lt;1 0 2 1 3 2], &lt;0 1 0 1 0 1]]<br />
</td>
        <td>5/4 7/6 11/8 13/12<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.6309<br />
</td>
        <td>118.9826<br />
</td>
        <td>21.3636<br />
</td>
        <td>[&lt;1 0 1 3 2 2], &lt;0 1 1 0 1 1]]<br />
</td>
        <td>6/5 8/7 11/10 13/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.6309<br />
</td>
        <td>118.2399<br />
</td>
        <td>24.7286<br />
</td>
        <td>[&lt;1 0 1 3 2 1], &lt;0 1 1 0 1 2]]<br />
</td>
        <td>6/5 8/7 11/10 15/13<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.6309<br />
</td>
        <td>99.9329<br />
</td>
        <td>21.2702<br />
</td>
        <td>[&lt;1 0 1 3 2 4], &lt;0 1 1 0 1 0]]<br />
</td>
        <td>6/5 8/7 11/10 14/13<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.7124<br />
</td>
        <td>120.1537<br />
</td>
        <td>22.8145<br />
</td>
        <td>[&lt;1 0 1 0 2 1], &lt;0 1 1 2 1 2]]<br />
</td>
        <td>6/5 9/7 11/10 14/13<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.7124<br />
</td>
        <td>112.9622<br />
</td>
        <td>24.7317<br />
</td>
        <td>[&lt;2 3 5 0 7 7], &lt;0 0 0 1 0 0]]<br />
</td>
        <td>6/5 9/8 11/10 13/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.8107<br />
</td>
        <td>83.1978<br />
</td>
        <td>22.0229<br />
</td>
        <td>[&lt;3 5 7 8 10 0], &lt;0 0 0 0 0 1]]<br />
</td>
        <td>7/6 10/9 11/9 16/15<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.8614<br />
</td>
        <td>81.8009<br />
</td>
        <td>18.7149<br />
</td>
        <td>[&lt;1 0 -1 1 0 2], &lt;0 1 2 1 2 1]]<br />
</td>
        <td>7/6 10/9 11/9 13/12<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.8614<br />
</td>
        <td>93.1286<br />
</td>
        <td>21.7729<br />
</td>
        <td>[&lt;1 0 -1 1 2 2], &lt;0 1 2 1 1 1]]<br />
</td>
        <td>7/6 10/9 12/11 13/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.8614<br />
</td>
        <td>76.3571<br />
</td>
        <td>22.8403<br />
</td>
        <td>[&lt;1 0 -1 3 2 2], &lt;0 1 2 0 1 1]]<br />
</td>
        <td>8/7 10/9 12/11 13/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.8614<br />
</td>
        <td>57.0733<br />
</td>
        <td>19.3277<br />
</td>
        <td>[&lt;2 3 0 1 2 7], &lt;0 0 1 1 1 0]]<br />
</td>
        <td>9/8 11/10 13/12 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.8614<br />
</td>
        <td>61.7635<br />
</td>
        <td>21.4961<br />
</td>
        <td>[&lt;2 3 0 1 7 3], &lt;0 0 1 1 0 1]]<br />
</td>
        <td>9/8 12/11 14/13 15/13<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.8614<br />
</td>
        <td>64.6390<br />
</td>
        <td>22.8779<br />
</td>
        <td>[&lt;2 3 0 1 7 7], &lt;0 0 1 1 0 0]]<br />
</td>
        <td>9/8 12/11 13/11 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.8672<br />
</td>
        <td>75.4782<br />
</td>
        <td>22.2821<br />
</td>
        <td>[&lt;3 5 7 8 0 11], &lt;0 0 0 0 1 0]]<br />
</td>
        <td>7/6 10/9 13/12 16/15<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.0616<br />
</td>
        <td>72.2918<br />
</td>
        <td>22.6134<br />
</td>
        <td>[&lt;1 0 4 3 2 2], &lt;0 1 -1 0 1 1]]<br />
</td>
        <td>8/7 12/11 13/11 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.0616<br />
</td>
        <td>68.1560<br />
</td>
        <td>21.3950<br />
</td>
        <td>[&lt;1 0 4 3 2 4], &lt;0 1 -1 0 1 0]]<br />
</td>
        <td>8/7 12/11 14/13 15/13<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.0686<br />
</td>
        <td>48.2352<br />
</td>
        <td>24.6210<br />
</td>
        <td>[&lt;3 5 7 0 2 11], &lt;0 0 0 1 1 0]]<br />
</td>
        <td>10/9 13/12 16/15 22/21<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.0686<br />
</td>
        <td>46.0898<br />
</td>
        <td>24.1511<br />
</td>
        <td>[&lt;3 5 7 0 2 3], &lt;0 0 0 1 1 1]]<br />
</td>
        <td>10/9 14/13 16/15 22/21<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.0810<br />
</td>
        <td>54.4751<br />
</td>
        <td>21.7669<br />
</td>
        <td>[&lt;4 6 9 11 14 0], &lt;0 0 0 0 0 1]]<br />
</td>
        <td>9/8 12/11 15/14 25/22<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.0810<br />
</td>
        <td>53.8146<br />
</td>
        <td>21.8059<br />
</td>
        <td>[&lt;2 3 0 1 2 -2], &lt;0 0 1 1 1 2]]<br />
</td>
        <td>9/8 11/10 15/14 26/25<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.1563<br />
</td>
        <td>51.8815<br />
</td>
        <td>22.1512<br />
</td>
        <td>[&lt;1 0 -1 -2 -3 2], &lt;0 1 2 3 4 1]]<br />
</td>
        <td>10/9 13/12 15/14 22/21<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.1563<br />
</td>
        <td>55.5099<br />
</td>
        <td>24.5510<br />
</td>
        <td>[&lt;4 6 9 11 0 15], &lt;0 0 0 0 1 0]]<br />
</td>
        <td>9/8 14/13 15/13 35/32<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.1563<br />
</td>
        <td>41.3624<br />
</td>
        <td>24.4943<br />
</td>
        <td>[&lt;4 6 9 11 0 1], &lt;0 0 0 0 1 1]]<br />
</td>
        <td>9/8 15/14 25/24 55/52<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.1714<br />
</td>
        <td>53.8501<br />
</td>
        <td>22.8620<br />
</td>
        <td>[&lt;1 0 4 3 2 7], &lt;0 1 -1 0 1 -2]]<br />
</td>
        <td>8/7 12/11 15/14 26/25<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.2619<br />
</td>
        <td>55.5942<br />
</td>
        <td>23.7686<br />
</td>
        <td>[&lt;1 1 2 2 3 3], &lt;0 2 1 3 2 2]]<br />
</td>
        <td>12/11 13/11 15/14 25/22<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.2619<br />
</td>
        <td>53.0408<br />
</td>
        <td>23.1630<br />
</td>
        <td>[&lt;1 1 2 2 3 3], &lt;0 2 1 3 2 3]]<br />
</td>
        <td>12/11 14/13 15/13 25/22<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.2920<br />
</td>
        <td>43.2424<br />
</td>
        <td>21.8817<br />
</td>
        <td>[&lt;1 0 0 2 1 2], &lt;0 2 3 1 3 2]]<br />
</td>
        <td>11/10 13/12 21/20 27/25<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.2920<br />
</td>
        <td>39.0609<br />
</td>
        <td>21.8839<br />
</td>
        <td>[&lt;1 0 0 2 2 3], &lt;0 2 3 1 2 1]]<br />
</td>
        <td>12/11 14/13 21/20 27/25<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.2920<br />
</td>
        <td>42.8838<br />
</td>
        <td>24.2613<br />
</td>
        <td>[&lt;1 0 0 2 1 3], &lt;0 2 3 1 3 1]]<br />
</td>
        <td>11/10 14/13 21/20 27/25<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.3433<br />
</td>
        <td>43.8182<br />
</td>
        <td>20.8537<br />
</td>
        <td>[&lt;1 0 4 6 5 7], &lt;0 1 -1 -2 -1 -2]]<br />
</td>
        <td>11/10 14/13 16/15 26/25<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.3433<br />
</td>
        <td>48.6247<br />
</td>
        <td>23.3373<br />
</td>
        <td>[&lt;1 0 4 6 5 2], &lt;0 1 -1 -2 -1 1]]<br />
</td>
        <td>11/10 13/12 16/15 21/20<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.3433<br />
</td>
        <td>41.3652<br />
</td>
        <td>22.5640<br />
</td>
        <td>[&lt;1 0 4 6 2 7], &lt;0 1 -1 -2 1 -2]]<br />
</td>
        <td>12/11 14/13 16/15 26/25<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.3512<br />
</td>
        <td>38.8900<br />
</td>
        <td>22.4912<br />
</td>
        <td>[&lt;5 8 12 14 17 0], &lt;0 0 0 0 0 1]]<br />
</td>
        <td>11/10 16/15 21/20 27/25<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.4453<br />
</td>
        <td>33.1105<br />
</td>
        <td>21.4624<br />
</td>
        <td>[&lt;5 8 12 14 0 19], &lt;0 0 0 0 1 0]]<br />
</td>
        <td>14/13 16/15 26/25 27/25<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.4993<br />
</td>
        <td>37.8027<br />
</td>
        <td>22.5820<br />
</td>
        <td>[&lt;1 0 4 -2 2 -1], &lt;0 1 -1 3 1 3]]<br />
</td>
        <td>12/11 14/13 16/15 27/26<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.6091<br />
</td>
        <td>33.9540<br />
</td>
        <td>24.0271<br />
</td>
        <td>[&lt;1 0 4 -2 2 7], &lt;0 1 -1 3 1 -2]]<br />
</td>
        <td>12/11 16/15 26/25 35/33<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.6181<br />
</td>
        <td>43.6565<br />
</td>
        <td>23.8050<br />
</td>
        <td>[&lt;1 1 2 3 3 3], &lt;0 2 1 -1 1 2]]<br />
</td>
        <td>11/10 13/12 21/20 25/24<br />
</td>
    </tr>
</table>

</body></html>