Catalog of 11-limit rank-2 temperaments

Revision as of 18:38, 26 January 2012 by Wikispaces>genewardsmith (**Imported revision 295749300 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-01-26 18:38:12 UTC.
The original revision id was 295749300.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

Below is a **complete** listing of all 193 11-limit rank-two temperaments with TE complexity less than 16 and TE badness less than 1/30, obtained by the method discussed [[The wedgie|here]]. The TE error is multiplied by 1200 so that it can be thought of as cents, and the badness is multiplied by 1000. Some "Junk" temperaments of very low complexity are listed below the main list, which is ordered by increasing complexity.

=Temperament list=
|| Name || Complexity || Error || Badness || Mapping || Commas ||
||   || .655 || 54.775 || 22.549 || [<1 0 -1 -2 -3|, <0 1 2 3 4|] || 10/9 15/14 22/21 ||
||   || .680 || 74.627 || 32.666 || [<3 5 7 0 10|, <0 0 0 1 0|] || 11/9 10/9 16/15 ||
||   || .692 || 73.354 || 33.117 || [<1 0 4 3 7|, <0 1 -1 0 -2|] || 8/7 25/22 15/14 ||
||   || .712 || 47.618 || 22.540 || [<4 6 9 11 0|, <0 0 0 0 1|] || 9/8 35/32 15/14 ||
||   || .718 || 57.400 || 27.551 || [<2 3 0 1 -2|, <0 0 1 1 2|] || 25/22 9/8 15/14 ||
||   || .718 || 46.851 || 22.488 || [<1 1 2 2 3|, <0 2 1 3 2|] || 25/22 12/11 15/14 ||
||   || .727 || 44.826 || 21.957 || [<1 0 4 6 5|, <0 1 -1 -2 -1|] || 11/10 16/15 21/20 ||
||   || .771 || 47.381 || 25.592 || [<3 5 7 0 2|, <0 0 0 1 1|] || 10/9 16/15 22/21 ||
||   || .776 || 45.662 || 24.928 || [<1 0 4 6 2|, <0 1 -1 -2 1|] || 12/11 16/15 21/20 ||
||   || .796 || 38.983 || 22.203 || [<1 0 0 2 1|, <0 2 3 1 3|] || 11/10 27/25 21/20 ||
||   || .807 || 41.497 || 24.184 || [<1 0 0 2 2|, <0 2 3 1 2|] || 12/11 27/25 21/20 ||
||   || .832 || 38.874 || 23.823 || [<1 0 4 -2 2|, <0 1 -1 3 1|] || 12/11 16/15 28/27 ||
||   || .833 || 47.271 || 29.071 || [<1 1 2 3 3|, <0 2 1 -1 1|] || 11/10 21/20 25/24 ||
|| Dicot || .854 || 30.986 || 19.854 || [<1 1 2 2 2|, <0 2 1 3 5|] || 15/14 22/21 25/24 ||
||   || .905 || 43.667 || 30.795 || [<1 0 4 -2 5|, <0 1 -1 3 -1|] || 11/10 16/15 28/27 ||
||   || .923 || 33.964 || 24.785 || [<5 8 12 14 0|, <0 0 0 0 1|] || 27/25 16/15 21/20 ||
||   || .931 || 43.645 || 32.259 || [<1 0 3 2 1|, <0 2 -1 1 3|] || 35/32 15/14 22/21 ||
||   || .979 || 40.847 || 32.831 || [<1 0 4 6 10|, <0 1 -1 -2 -4|] || 16/15 35/33 21/20 ||
||   || .986 || 25.28 || 20.589 || [<1 0 4 -2 -3|, <0 1 -1 3 4|] || 16/15 22/21 28/27 ||
||   || 1.016 || 29.191 || 24.988 || [<1 1 2 3 4|, <0 2 1 -1 -2|] || 21/20 25/24 33/32 ||
||   || 1.023 || 30.999 || 26.828 || [<1 0 7 6 5|, <0 1 -3 -2 -1|] || 15/14 22/21 33/32 ||
||   || 1.042 || 27.464 || 24.506 || [<1 0 -4 -2 -6|, <0 1 4 3 6|] || 35/33 21/20 28/27 ||
||   || 1.067 || 29.219 || 27.114 || [<1 1 2 2 4|, <0 2 1 3 -2|] || 15/14 25/24 33/32 ||
||   || 1.087 || 26.805 || 25.660 || [<1 1 2 3 2|, <0 2 1 -1 5|] || 21/20 25/24 45/44 ||
|| Meanertone || 1.138 || 24.359 || 25.167 || [<1 0 -4 -2 5|, <0 1 4 3 -1|] || 21/20 28/27 55/54 ||
||   || 1.138 || 22.068 || 22.799 || [<1 0 0 2 -2|, <0 2 3 1 7|] || 27/25 21/20 45/44 ||
|| Pentoid || 1.142 || 21.771 || 22.649 || [<1 0 0 2 5|, <0 2 3 1 -2|] || 27/25 21/20 99/98 ||
||   || 1.148 || 30.989 || 32.521 || [<1 0 -4 -5 -6|, <0 1 4 5 6|] || 15/14 22/21 125/121 ||
||   || 1.196 || 19.922 || 22.366 || [<1 1 2 1 2|, <0 2 1 6 5|] || 35/33 25/24 28/27 ||
||   || 1.208 || 25.57 || 29.193 || [<2 0 8 9 7|, <0 1 -1 -1 0|] || 16/15 22/21 50/49 ||
||   || 1.226 || 19.454 || 22.753 || [<1 0 7 9 5|, <0 1 -3 -4 -1|] || 21/20 33/32 45/44 ||
||   || 1.258 || 23.058 || 28.153 || [<1 0 4 -2 10|, <0 1 -1 3 -4|] || 16/15 28/27 77/75 ||
|| Hystrix || 1.335 || 19.86 || 26.790 || [<1 2 3 3 4|, <0 -3 -5 -1 -4|] || 22/21 80/77 36/35 ||
|| Arnold || 1.340 || 19.265 || 26.141 || [<1 0 -4 6 5|, <0 1 4 -2 -1|] || 22/21 33/32 36/35 ||
||   || 1.358 || 22.998 || 31.934 || [<5 8 0 14 17|, <0 0 1 0 0|] || 22/21 28/27 33/32 ||
||   || 1.415 || 18.282 || 27.164 || [<4 0 3 5 1|, <0 1 1 1 2|] || 22/21 36/35 50/49 ||
||   || 1.431 || 20.956 || 31.719 || [<1 1 2 4 4|, <0 2 1 -4 -2|] || 22/21 25/24 33/32 ||
||   || 1.443 || 20.107 || 30.883 || [<5 8 0 14 6|, <0 0 1 0 1|] || 35/33 28/27 49/48 ||
||   || 1.461 || 20.67 || 32.385 || [<2 0 3 4 7|, <0 2 1 1 0|] || 35/33 25/24 49/48 ||
||   || 1.495 || 19.317 || 31.468 || [<2 0 -5 -4 -6|, <0 1 3 3 4|] || 22/21 28/27 50/49 ||
||   || 1.500 || 19.693 || 32.239 || [<1 1 2 1 4|, <0 2 1 6 -2|] || 25/24 28/27 33/32 ||
|| August || 1.506 || 12.245 || 20.191 || [<3 0 7 -1 1|, <0 1 0 2 2|] || 36/35 45/44 56/55 ||
|| Domineering || 1.523 || 13.075 || 21.978 || [<1 0 -4 6 -6|, <0 1 4 -2 6|] || 36/35 45/44 64/63 ||
|| Septimal || 1.564 || 13.396 || 23.524 || [<7 11 16 0 24|, <0 0 0 1 0|] || 25/24 33/32 45/44 ||
|| Diminished || 1.582 || 12.367 || 22.132 || [<4 0 3 5 14|, <0 1 1 1 0|] || 36/35 50/49 56/55 ||
|| Armodue || 1.603 || 14.879 || 27.211 || [<1 0 7 -5 5|, <0 1 -3 5 -1|] || 33/32 36/35 45/44 ||
|| Dichotic || 1.630 || 16.311 || 30.680 || [<1 1 2 4 2|, <0 2 1 -4 5|] || 25/24 45/44 64/63 ||
|| Opossum || 1.692 || 11.146 || 22.325 || [<1 2 3 4 4|, <0 -3 -5 -9 -4|] || 28/27 77/75 55/54 ||
|| Octokaidecal || 1.698 || 15.008 || 30.235 || [<2 0 -5 -4 7|, <0 1 3 3 0|] || 28/27 50/49 55/54 ||
|| Pajaric || 1.722 || 11.548 || 23.798 || [<2 0 11 12 7|, <0 1 -2 -2 0|] || 45/44 50/49 56/55 ||
|| Progression || 1.749 || 12.314 || 26.050 || [<1 1 2 2 3|, <0 5 3 7 4|] || 36/35 77/75 56/55 ||
|| Decimal || 1.751 || 12.599 || 26.712 || [<2 0 3 4 -1|, <0 2 1 1 5|] || 25/24 45/44 49/48 ||
|| Blacksmith || 1.825 || 10.85 || 24.641 || [<5 8 0 14 29|, <0 0 1 0 -1|] || 28/27 49/48 55/54 ||
|| Demolished || 1.831 || 11.635 || 26.574 || [<4 0 3 5 -5|, <0 1 1 1 3|] || 36/35 45/44 50/49 ||
|| Dominant || 1.864 || 10.279 || 24.180 || [<1 0 -4 6 13|, <0 1 4 -2 -6|] || 36/35 56/55 64/63 ||
|| Decimated || 1.886 || 13.109 || 31.456 || [<2 0 3 4 10|, <0 2 1 1 -2|] || 25/24 33/32 49/48 ||
|| Meanenneadecal || 1.918 || 8.680 || 21.423 || [<1 0 -4 -13 -6|, <0 1 4 10 6|] || 45/44 56/55 81/80 ||
|| Sidi || 1.958 || 12.902 || 32.957 || [<1 3 3 6 7|, <0 -4 -2 -9 -10|] || 25/24 45/44 99/98 ||
|| Ferrier || 1.993 || 11.103 || 29.200 || [<5 8 0 14 -6|, <0 0 1 0 2|] || 28/27 77/75 49/48 ||
|| Superpelog || 2.016 || 10.640 || 28.535 || [<1 0 7 2 5|, <0 2 -6 1 -2|] || 33/32 45/44 99/98 ||
|| Negri || 2.038 || 9.594 || 26.190 || [<1 2 2 3 4|, <0 -4 3 -2 -5|] || 45/44 49/48 56/55 ||
|| Inflated || 2.102 || 10.843 || 31.171 || [<3 0 7 -6 -4|, <0 1 0 3 3|] || 28/27 128/125 55/54 ||
|| Injera || 2.153 || 7.728 || 23.124 || [<2 0 -8 -7 -12|, <0 1 4 4 6|] || 45/44 50/49 99/98 ||
|| Negric || 2.198 || 9.886 || 30.617 || [<1 2 2 3 3|, <0 -4 3 -2 4|] || 33/32 77/75 49/48 ||
|| Triforce || 2.201 || 8.427 || 26.152 || [<3 0 7 6 8|, <0 2 0 1 1|] || 77/75 128/125 56/55 ||
|| Duodecim || 2.201 || 9.839 || 30.536 || [<12 19 28 34 0|, <0 0 0 0 1|] || 36/35 50/49 64/63 ||
|| Meanundeci || 2.204 || 10.143 || 31.539 || [<1 0 -4 -13 5|, <0 1 4 10 -1|] || 33/32 77/75 55/54 ||
|| Semafour || 2.212 || 9.111 || 28.510 || [<1 0 -4 2 5|, <0 2 8 1 -2|] || 33/32 49/48 55/54 ||
|| Augene || 2.286 || 5.932 || 19.613 || [<3 0 7 18 20|, <0 1 0 -2 -2|] || 56/55 64/63 100/99 ||
|| Godzilla || 2.343 || 8.404 || 28.947 || [<1 0 -4 2 -6|, <0 2 8 1 12|] || 45/44 49/48 81/80 ||
|| Darjeeling || 2.347 || 8.002 || 27.648 || [<1 0 1 2 0|, <0 6 5 3 13|] || 77/75 49/48 55/54 ||
|| Progress || 2.399 || 8.662 || 31.036 || [<1 0 5 6 4|, <0 3 -5 -6 -1|] || 77/75 56/55 64/63 ||
|| Hedgehog || 2.439 || 6.273 || 23.095 || [<2 1 1 2 4|, <0 3 5 5 4|] || 50/49 55/54 99/98 ||
|| Keemun || 2.468 || 7.298 || 27.410 || [<1 0 1 2 4|, <0 6 5 3 -2|] || 49/48 56/55 100/99 ||
|| Porcupine || 2.478 || 5.703 || 21.562 || [<1 2 3 2 4|, <0 -3 -5 6 -4|] || 55/54 64/63 100/99 ||
|| Pajara || 2.543 || 5.151 || 20.343 || [<2 0 11 12 26|, <0 1 -2 -2 -6|] || 50/49 99/98 176/175 ||
|| Nautilus || 2.548 || 6.568 || 26.023 || [<1 2 3 3 4|, <0 -6 -10 -3 -8|] || 49/48 55/54 245/242 ||
|| Pajarous || 2.718 || 6.427 || 28.349 || [<2 0 11 12 -9|, <0 1 -2 -2 5|] || 50/49 55/54 64/63 ||
|| Telepathy || 2.864 || 5.631 || 27.109 || [<1 0 2 -1 -1|, <0 5 1 12 14|] || 55/54 99/98 176/175 ||
|| Sensis || 2.98 || 5.578 || 28.680 || [<1 6 8 11 6|, <0 -7 -9 -13 -4|] || 56/55 100/99 245/243 ||
|| Suprapyth || 3.011 || 6.264 || 32.768 || [<1 0 -12 6 13|, <0 1 9 -2 -6|] || 55/54 64/63 99/98 ||
|| Porky || 3.02 || 5.186 || 27.268 || [<1 2 3 5 4|, <0 -3 -5 -16 -4|] || 55/54 100/99 225/224 ||
|| Meantone || 3.031 || 3.218 || 17.027 || [<1 0 -4 -13 -25|, <0 1 4 10 18|] || 81/80 99/98 126/125 ||
|| Ringo || 3.126 || 5.902 || 32.863 || [<1 1 5 4 2|, <0 2 -9 -4 5|] || 56/55 64/63 540/539 ||
|| Orwell || 3.242 || 2.574 || 15.231 || [<1 0 3 1 3|, <0 7 -3 8 2|] || 99/98 121/120 176/175 ||
|| Doublewide || 3.407 || 4.988 || 32.058 || [<2 1 3 4 8|, <0 4 3 3 -2|] || 50/49 875/864 99/98 ||
|| Superpyth || 3.410 || 3.88 || 24.976 || [<1 0 -12 6 -22|, <0 1 9 -2 16|] || 64/63 100/99 245/243 ||
|| Squares || 3.486 || 3.240 || 21.636 || [<1 3 8 6 7|, <0 -4 -16 -9 -10|] || 81/80 99/98 121/120 ||
|| Quasisupra || 3.49 || 4.812 || 32.203 || [<1 0 23 6 13|, <0 1 -13 -2 -6|] || 64/63 99/98 121/120 ||
|| Valentine || 3.651 || 2.313 || 16.687 || [<1 1 2 3 3|, <0 9 5 -3 7|] || 121/120 126/125 176/175 ||
|| Magic || 3.715 || 2.741 || 20.352 || [<1 0 2 -1 6|, <0 5 1 12 -8|] || 100/99 245/243 225/224 ||
|| Meanpop || 3.820 || 2.770 || 21.543 || [<1 0 -4 -13 24|, <0 1 4 10 -13|] || 81/80 126/125 540/539 ||
|| Mohajira || 3.863 || 3.288 || 26.064 || [<1 1 0 6 2|, <0 2 8 -11 5|] || 81/80 121/120 176/175 ||
|| Cassandra || 3.897 || 2.929 || 23.556 || [<1 0 15 25 32|, <0 1 -8 -14 -18|] || 245/242 100/99 225/224 ||
|| Nusecond || 3.927 || 3.146 || 25.621 || [<1 3 4 5 5|, <0 -11 -13 -17 -12|] || 99/98 121/120 126/125 ||
|| Migration || 3.935 || 3.123 || 25.516 || [<1 1 0 -3 2|, <0 2 8 20 5|] || 81/80 121/120 126/125 ||
|| Mothra || 3.99 || 3.066 || 25.642 || [<1 1 0 3 5|, <0 3 12 -1 -8|] || 81/80 99/98 385/384 ||
|| Octacot || 4.070 || 2.785 || 24.078 || [<1 1 1 2 2|, <0 8 18 11 20|] || 245/242 100/99 243/242 ||
|| Myna || 4.127 || 1.903 || 16.842 || [<1 9 9 8 22|, <0 -10 -9 -7 -25|] || 126/125 176/175 243/242 ||
|| Superkleismic || 4.137 || 2.888 || 25.659 || [<1 4 5 2 4|, <0 -9 -10 3 -2|] || 245/242 100/99 385/384 ||
|| Würschmidt || 4.344 || 2.533 || 24.413 || [<1 7 3 15 17|, <0 -8 -1 -18 -20|] || 99/98 176/175 243/242 ||
|| Miracle || 4.405 || 1.083 || 10.684 || [<1 1 3 3 2|, <0 6 -7 -2 15|] || 225/224 385/384 441/440 ||
|| Mosura || 4.411 || 3.17 || 31.334 || [<1 1 0 3 -1|, <0 3 12 -1 23|] || 81/80 1029/1024 540/539 ||
|| Sensus || 4.503 || 2.882 || 29.486 || [<1 6 8 11 23|, <0 -7 -9 -13 -31|] || 245/243 126/125 176/175 ||
|| Shrutar || 4.53 || 2.563 || 26.489 || [<2 1 9 -2 8|, <0 2 -4 7 -1|] || 121/120 245/243 176/175 ||
|| Revelation || 4.531 || 3.187 || 32.946 || [<1 1 3 3 5|, <0 6 -7 -2 -16|] || 99/98 176/175 1029/1024 ||
|| Tritonic || 4.596 || 2.234 || 23.659 || [<1 4 -3 -3 2|, <0 -5 11 12 3|] || 121/120 225/224 441/440 ||
|| Bunya || 4.833 || 2.722 || 31.332 || [<1 1 1 -1 2|, <0 4 9 26 10|] || 100/99 225/224 243/242 ||
|| Diaschismic || 5.048 || 2.023 || 25.034 || [<2 0 11 31 45|, <0 1 -2 -8 -12|] || 126/125 5488/5445 176/175 ||
|| Septimin || 5.089 || 2.496 || 31.309 || [<1 4 1 5 5|, <0 -11 6 -10 -7|] || 2401/2376 225/224 385/384 ||
|| Witchcraft || 5.419 || 2.204 || 30.706 || [<1 0 2 -1 -7|, <0 5 1 12 33|] || 245/243 225/224 441/440 ||
|| Thuja || 5.622 || 2.233 || 33.078 || [<1 8 5 -2 4|, <0 -12 -5 9 -1|] || 1344/1331 126/125 176/175 ||
|| Hemiwur || 5.723 || 1.918 || 29.270 || [<1 15 4 7 11|, <0 -16 -2 -5 -9|] || 121/120 176/175 1375/1372 ||
|| Rodan || 5.754 || 1.50 || 23.093 || [<1 1 -1 3 6|, <0 3 17 -1 -13|] || 245/243 385/384 441/440 ||
|| Echidna || 5.898 || 1.62 || 25.987 || [<2 1 9 2 12|, <0 3 -6 5 -7|] || 176/175 896/891 540/539 ||
|| Semisept || 5.969 || 1.373 || 22.476 || [<1 12 6 12 20|, <0 -17 -6 -15 -27|] || 1331/1323 176/175 540/539 ||
|| Newspeak || 6.006 || 1.901 || 31.438 || [<1 0 3 1 -4|, <0 7 -3 8 33|] || 1728/1715 225/224 441/440 ||
|| Hemififths || 6.148 || 1.367 || 23.498 || [<1 1 -5 -1 2|, <0 2 25 13 5|] || 896/891 243/242 441/440 ||
|| Garibaldi || 6.365 || 1.504 || 27.396 || [<1 0 15 25 -33|, <0 1 -8 -14 23|] || 2200/2187 225/224 385/384 ||
|| Wizard || 6.421 || 1.003 || 18.539 || [<2 1 5 2 8|, <0 6 -1 10 -3|] || 225/224 385/384 4000/3993 ||
|| Slender || 6.727 || 1.269 || 25.342 || [<1 2 2 3 4|, <0 -13 10 -6 -17|] || 1331/1323 225/224 385/384 ||
|| Compton || 6.767 || 1.102 || 22.235 || [<12 19 0 -22 -42|, <0 0 1 2 3|] || 225/224 4375/4356 441/440 ||
|| Hemithirds || 7.040 || .882 || 19.003 || [<1 4 2 2 7|, <0 -15 2 5 -22|] || 3136/3125 385/384 441/440 ||
|| Catakleismic || 7.254 || .965 || 21.849 || [<1 0 1 -3 9|, <0 6 5 22 -21|] || 225/224 385/384 4375/4374 ||
|| Harry || 7.373 || .682 || 15.867 || [<2 4 7 7 9|, <0 -6 -17 -10 -15|] || 243/242 441/440 4000/3993 ||
|| Pluto || 7.524 || 1.24 || 29.844 || [<1 5 15 15 2|, <0 -7 -26 -25 3|] || 896/891 1375/1372 540/539 ||
|| Unidec || 7.532 || .642 || 15.479 || [<2 5 8 5 6|, <0 -6 -11 2 3|] || 385/384 441/440 12005/11979 ||
|| Ennealimmic || 7.578 || .835 || 20.347 || [<9 1 1 12 -2|, <0 2 3 2 5|] || 4375/4356 243/242 441/440 ||
|| Tritikleismic || 7.587 || .792 || 19.333 || [<3 0 3 10 8|, <0 6 5 -2 3|] || 385/384 441/440 4000/3993 ||
|| Hemiwürschmidt || 7.793 || .825 || 21.069 || [<1 15 4 7 37|, <0 -16 -2 -5 -40|] || 243/242 3136/3125 441/440 ||
|| Marvolo || 7.935 || 1.101 || 28.965 || [<1 2 1 1 2|, <0 -6 19 26 21|] || 225/224 441/440 4000/3993 ||
|| Bikleismic || 8.191 || 1.057 || 29.319 || [<2 0 2 -6 -1|, <0 6 5 22 15|] || 225/224 4375/4356 243/242 ||
|| Catalytic || 8.212 || 1.092 || 30.422 || [<1 0 1 -3 -10|, <0 6 5 22 51|] || 225/224 441/440 4375/4374 ||
|| Enneaportent || 8.286 || 1.076 || 30.426 || [<9 0 28 11 24|, <0 2 -1 2 1|] || 225/224 385/384 12005/11979 ||
|| Marvo || 8.731 || 1.027 || 31.685 || [<1 5 12 29 12|, <0 -6 -17 -46 -15|] || 225/224 243/242 4000/3993 ||
|| Octoid || 9.170 || .421 || 14.097 || [<8 1 3 3 16|, <0 3 4 5 3|] || 1375/1372 540/539 4000/3993 ||
|| Tertia || 9.182 || .899 || 30.171 || [<1 3 2 3 5|, <0 -22 5 -3 -24|] || 1331/1323 385/384 1375/1372 ||
|| Guiron || 9.377 || .767 || 26.648 || [<1 1 7 3 -2|, <0 3 -24 -1 28|] || 10976/10935 385/384 441/440 ||
|| Neominor || 9.493 || .788 || 27.959 || [<1 3 12 8 7|, <0 -6 -41 -22 -15|] || 243/242 35937/35840 441/440 ||
|| Grendel || 9.729 || .537 || 19.845 || [<1 9 2 7 17|, <0 -23 1 -13 -42|] || 1375/1372 540/539 5632/5625 ||
|| Hemiseven || 9.733 || .770 || 28.467 || [<1 4 14 2 -5|, <0 -6 -29 2 21|] || 19683/19600 385/384 441/440 ||
|| Sqrtphi || 9.756 || .687 || 25.515 || [<1 12 11 16 17|, <0 -30 -25 -38 -39|] || 4375/4356 1375/1372 540/539 ||
|| Commatic || 9.831 || .810 || 30.461 || [<2 3 4 5 6|, <0 5 19 18 27|] || 3388/3375 8019/8000 441/440 ||
|| Sesquart || 9.891 || .772 || 29.306 || [<1 1 7 5 2|, <0 4 -32 -15 10|] || 243/242 16384/16335 441/440 ||
|| Quadritikleismic || 10.315 || .575 || 23.406 || [<4 0 4 7 17|, <0 6 5 4 -3|] || 385/384 1375/1372 9801/9800 ||
|| Mirkat || 10.575 || .521 || 22.126 || [<3 2 1 2 9|, <0 6 13 14 3|] || 8019/8000 1375/1372 540/539 ||
|| Bisupermajor || 10.578 || .755 || 32.080 || [<2 1 6 1 8|, <0 8 -5 17 -4|] || 3388/3375 385/384 9801/9800 ||
|| Cotritone || 10.735 || .740 || 32.225 || [<1 17 9 10 5|, <0 -30 -13 -14 -3|] || 385/384 1375/1372 4000/3993 ||
|| Kwai || 11.134 || .567 || 26.219 || [<1 0 -50 -40 32|, <0 1 33 27 -18|] || 16384/16335 1375/1372 540/539 ||
|| Triwell || 11.163 || .642 || 29.807 || [<1 7 0 1 13|, <0 -21 9 7 -37|] || 385/384 441/440 456533/455625 ||
|| Supers || 11.476 || .580 || 28.240 || [<2 1 -12 2 -9|, <0 3 23 5 22|] || 5120/5103 540/539 4000/3993 ||
|| Ennealiminal || 11.678 || .621 || 31.123 || [<9 1 1 12 51|, <0 2 3 2 -3|] || 385/384 1375/1372 4375/4374 ||
|| Bischismic || 11.743 || .557 || 28.160 || [<2 0 30 69 102|, <0 1 -8 -20 -30|] || 3136/3125 8019/8000 441/440 ||
|| Septisuperfourth || 12.086 || .464 || 24.619 || [<2 4 4 7 6|, <0 -9 7 -15 10|] || 540/539 4000/3993 5632/5625 ||
|| Amity || 12.537 || .559 || 31.506 || [<1 3 6 -2 21|, <0 -5 -13 17 -62|] || 5120/5103 540/539 5632/5625 ||
|| Quincy || 12.684 || .537 || 30.875 || [<1 2 3 3 4|, <0 -30 -49 -14 -39|] || 441/440 4000/3993 41503/41472 ||
|| Octowerck || 13.282 || .486 || 30.159 || [<8 0 -11 14 15|, <0 3 7 2 3|] || 441/440 8019/8000 41503/41472 ||
|| Hemiamity || 13.714 || .478 || 31.307 || [<2 1 -1 13 13|, <0 5 13 -17 -14|] || 5120/5103 3025/3024 4375/4374 ||
|| Eris || 13.875 || .414 || 27.621 || [<1 10 0 6 20|, <0 -29 8 -11 -57|] || 1375/1372 540/539 65625/65536 ||
|| Unthirds || 14.390 || .323 || 22.926 ||  [<1 29 33 25 25|, <0 -42 -47 -34 -33|] || 2401/2400, 3025/3024, 4000/3993 ||
|| Alphaquarter || 14.588 || .408 || 29.638 || [<1 2 2 0 3|, <0 -9 7 61 10|] || 5120/5103 4000/3993 3025/3024 ||
|| Hemiennealimmal || 14.648 || .0860 || 6.283 || [<18 0 -1 22 48|, <0 2 3 2 1|] || 2401/2400 3025/3024 4375/4374 ||
|| Vishnu || 14.963 || .187 || 14.180 || [<2 4 5 10 10|, <0 -7 -3 -37 -26|] || 3025/3024 4375/4374 5632/5625 ||
|| Quanharuk || 15.170 || .407 || 31.549 || [<1 0 15 12 -7|, <0 5 -40 -29 33|] || 1375/1372 540/539 32805/32768 ||
|| Sternscape || 15.352 || .406 || 32.096 || [<6 3 2 6 11|, <0 6 11 10 9|] || 540/539 4000/3993 137781/137500 ||
|| Pogo || 15.953 || .378 || 31.857 || [<2 1 22 2 25|, <0 3 -24 5 -25|] || 540/539 4000/3993 32805/32768 ||

=Junk temperaments=
|| Name || Complexity || Error || Badness || Mapping || Commas ||
|| || .193 || 327.406 || 17.646 || [<1 2 2 3 0|, <0 0 0 0 1|] || 4/3 5/3 7/6 ||
|| || .228 || 385.465 || 27.274 || [<1 2 2 0 3|, <0 0 0 1 0|] || 4/3 5/3 11/6 ||
|| || .267 || 336.13 || 30.988 || [<1 2 2 0 1|, <0 0 0 1 1|] || 4/3 5/3 14/11 ||
|| || .319 || 218.143 || 27.130 || [<1 2 0 3 1|, <0 0 1 0 1|] || 4/3 7/6 11/10 ||
|| || .324 || 253.143 || 32.311 || [<1 2 0 0 1|, <0 0 1 1 1|] || 4/3 7/5 11/10 ||
|| || .328 || 164.655 || 21.432 || [<1 0 1 1 2|, <0 1 1 1 1|] || 6/5 7/5 11/10 ||
|| || .354 || 167.706 || 24.774 || [<1 0 2 1 2|, <0 1 0 1 1|] || 5/4 7/6 12/11 ||
|| || .369 || 153.296 || 24.223 || [<1 0 2 1 3|, <0 1 0 1 0|] || 5/4 7/6 11/8 ||
|| || .375 || 124.872 || 20.250 || [<2 3 5 6 0|, <0 0 0 0 1|] || 6/5 8/7 9/7 ||
|| || .390 || 188.818 || 32.775 || [<1 0 2 3 2|, <0 1 0 0 1|] || 5/4 8/7 12/11 ||
|| || .406 || 110.926 || 20.608 || [<1 0 1 3 2|, <0 1 1 0 1|] || 6/5 8/7 11/10 ||
|| || .408 || 125.430 || 23.415 || [<1 0 1 0 2|, <0 1 1 2 1|] || 6/5 9/7 11/10 ||
|| || .452 || 94.454 || 20.943 || [<1 0 -1 1 0|, <0 1 2 1 2|] || 7/6 10/9 11/9 ||
|| || .455 || 110.141 || 24.702 || [<2 3 5 0 7|, <0 0 0 1 0|] || 6/5 9/8 11/10 ||
|| || .471 || 104.885 || 24.915 || [<1 0 -1 1 2|, <0 1 2 1 1|] || 7/6 10/9 12/11 ||
|| || .483 || 125.665 || 31.158 || [<1 0 1 0 -1|, <0 1 1 2 3|] || 6/5 9/7 22/21] ||
|| || .508 || 117.970 || 31.811 || [<2 3 5 0 1|, <0 0 0 1 1|] || 6/5 9/8 22/21 ||
|| || .549 || 103.420 || 31.715 || [<2 3 0 6 7|, <0 0 1 0 0|] || 8/7 9/7 12/11 ||
|| || .550 || 86.198 || 26.496 || [<3 5 7 8 0|, <0 0 0 0 1|] || 7/6 10/9 16/15 ||
|| || .557 || 60.511 || 18.993 || [<2 3 0 1 2|, <0 0 1 1 1|] || 9/8 11/10 15/14 ||
|| || .567 || 71.691 || 23.207 || [<1 0 -1 3 2|, <0 1 2 0 1|] || 8/7 10/9 12/11 ||
|| || .574 || 93.134 || 30.760 || [<1 0 -1 3 0|, <0 1 2 0 2|] || 8/7 10/9 11/9 ||
|| || .575 || 60.585 || 20.049 || [<1 0 4 3 2|, <0 1 -1 0 1|] || 8/7 12/11 15/14 ||
|| || .588 || 78.370 || 26.952 || [<1 0 4 3 5|, <0 1 -1 0 -1|] || 8/7 11/10 15/14 ||
|| || .606 || 60.327 || 21.810 || [<2 3 0 1 7|, <0 0 1 1 0|] || 9/8 12/11 15/14 ||
|| || .622 || 69.361 || 26.170 || [<1 0 -1 -2 2|, <0 1 2 3 1|] || 10/9 12/11 15/14 ||
|| || .645 || 82.949 || 33.250 || [<1 0 -1 1 5|, <0 1 2 1 -1|] || 7/6 10/9 33/32 ||

Original HTML content:

<html><head><title>Catalog of eleven-limit rank two temperaments</title></head><body>Below is a <strong>complete</strong> listing of all 193 11-limit rank-two temperaments with TE complexity less than 16 and TE badness less than 1/30, obtained by the method discussed <a class="wiki_link" href="/The%20wedgie">here</a>. The TE error is multiplied by 1200 so that it can be thought of as cents, and the badness is multiplied by 1000. Some &quot;Junk&quot; temperaments of very low complexity are listed below the main list, which is ordered by increasing complexity.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Temperament list"></a><!-- ws:end:WikiTextHeadingRule:0 -->Temperament list</h1>


<table class="wiki_table">
    <tr>
        <td>Name<br />
</td>
        <td>Complexity<br />
</td>
        <td>Error<br />
</td>
        <td>Badness<br />
</td>
        <td>Mapping<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.655<br />
</td>
        <td>54.775<br />
</td>
        <td>22.549<br />
</td>
        <td>[&lt;1 0 -1 -2 -3|, &lt;0 1 2 3 4|]<br />
</td>
        <td>10/9 15/14 22/21<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.680<br />
</td>
        <td>74.627<br />
</td>
        <td>32.666<br />
</td>
        <td>[&lt;3 5 7 0 10|, &lt;0 0 0 1 0|]<br />
</td>
        <td>11/9 10/9 16/15<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.692<br />
</td>
        <td>73.354<br />
</td>
        <td>33.117<br />
</td>
        <td>[&lt;1 0 4 3 7|, &lt;0 1 -1 0 -2|]<br />
</td>
        <td>8/7 25/22 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.712<br />
</td>
        <td>47.618<br />
</td>
        <td>22.540<br />
</td>
        <td>[&lt;4 6 9 11 0|, &lt;0 0 0 0 1|]<br />
</td>
        <td>9/8 35/32 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.718<br />
</td>
        <td>57.400<br />
</td>
        <td>27.551<br />
</td>
        <td>[&lt;2 3 0 1 -2|, &lt;0 0 1 1 2|]<br />
</td>
        <td>25/22 9/8 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.718<br />
</td>
        <td>46.851<br />
</td>
        <td>22.488<br />
</td>
        <td>[&lt;1 1 2 2 3|, &lt;0 2 1 3 2|]<br />
</td>
        <td>25/22 12/11 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.727<br />
</td>
        <td>44.826<br />
</td>
        <td>21.957<br />
</td>
        <td>[&lt;1 0 4 6 5|, &lt;0 1 -1 -2 -1|]<br />
</td>
        <td>11/10 16/15 21/20<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.771<br />
</td>
        <td>47.381<br />
</td>
        <td>25.592<br />
</td>
        <td>[&lt;3 5 7 0 2|, &lt;0 0 0 1 1|]<br />
</td>
        <td>10/9 16/15 22/21<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.776<br />
</td>
        <td>45.662<br />
</td>
        <td>24.928<br />
</td>
        <td>[&lt;1 0 4 6 2|, &lt;0 1 -1 -2 1|]<br />
</td>
        <td>12/11 16/15 21/20<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.796<br />
</td>
        <td>38.983<br />
</td>
        <td>22.203<br />
</td>
        <td>[&lt;1 0 0 2 1|, &lt;0 2 3 1 3|]<br />
</td>
        <td>11/10 27/25 21/20<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.807<br />
</td>
        <td>41.497<br />
</td>
        <td>24.184<br />
</td>
        <td>[&lt;1 0 0 2 2|, &lt;0 2 3 1 2|]<br />
</td>
        <td>12/11 27/25 21/20<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.832<br />
</td>
        <td>38.874<br />
</td>
        <td>23.823<br />
</td>
        <td>[&lt;1 0 4 -2 2|, &lt;0 1 -1 3 1|]<br />
</td>
        <td>12/11 16/15 28/27<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.833<br />
</td>
        <td>47.271<br />
</td>
        <td>29.071<br />
</td>
        <td>[&lt;1 1 2 3 3|, &lt;0 2 1 -1 1|]<br />
</td>
        <td>11/10 21/20 25/24<br />
</td>
    </tr>
    <tr>
        <td>Dicot<br />
</td>
        <td>.854<br />
</td>
        <td>30.986<br />
</td>
        <td>19.854<br />
</td>
        <td>[&lt;1 1 2 2 2|, &lt;0 2 1 3 5|]<br />
</td>
        <td>15/14 22/21 25/24<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.905<br />
</td>
        <td>43.667<br />
</td>
        <td>30.795<br />
</td>
        <td>[&lt;1 0 4 -2 5|, &lt;0 1 -1 3 -1|]<br />
</td>
        <td>11/10 16/15 28/27<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.923<br />
</td>
        <td>33.964<br />
</td>
        <td>24.785<br />
</td>
        <td>[&lt;5 8 12 14 0|, &lt;0 0 0 0 1|]<br />
</td>
        <td>27/25 16/15 21/20<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.931<br />
</td>
        <td>43.645<br />
</td>
        <td>32.259<br />
</td>
        <td>[&lt;1 0 3 2 1|, &lt;0 2 -1 1 3|]<br />
</td>
        <td>35/32 15/14 22/21<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.979<br />
</td>
        <td>40.847<br />
</td>
        <td>32.831<br />
</td>
        <td>[&lt;1 0 4 6 10|, &lt;0 1 -1 -2 -4|]<br />
</td>
        <td>16/15 35/33 21/20<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.986<br />
</td>
        <td>25.28<br />
</td>
        <td>20.589<br />
</td>
        <td>[&lt;1 0 4 -2 -3|, &lt;0 1 -1 3 4|]<br />
</td>
        <td>16/15 22/21 28/27<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.016<br />
</td>
        <td>29.191<br />
</td>
        <td>24.988<br />
</td>
        <td>[&lt;1 1 2 3 4|, &lt;0 2 1 -1 -2|]<br />
</td>
        <td>21/20 25/24 33/32<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.023<br />
</td>
        <td>30.999<br />
</td>
        <td>26.828<br />
</td>
        <td>[&lt;1 0 7 6 5|, &lt;0 1 -3 -2 -1|]<br />
</td>
        <td>15/14 22/21 33/32<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.042<br />
</td>
        <td>27.464<br />
</td>
        <td>24.506<br />
</td>
        <td>[&lt;1 0 -4 -2 -6|, &lt;0 1 4 3 6|]<br />
</td>
        <td>35/33 21/20 28/27<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.067<br />
</td>
        <td>29.219<br />
</td>
        <td>27.114<br />
</td>
        <td>[&lt;1 1 2 2 4|, &lt;0 2 1 3 -2|]<br />
</td>
        <td>15/14 25/24 33/32<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.087<br />
</td>
        <td>26.805<br />
</td>
        <td>25.660<br />
</td>
        <td>[&lt;1 1 2 3 2|, &lt;0 2 1 -1 5|]<br />
</td>
        <td>21/20 25/24 45/44<br />
</td>
    </tr>
    <tr>
        <td>Meanertone<br />
</td>
        <td>1.138<br />
</td>
        <td>24.359<br />
</td>
        <td>25.167<br />
</td>
        <td>[&lt;1 0 -4 -2 5|, &lt;0 1 4 3 -1|]<br />
</td>
        <td>21/20 28/27 55/54<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.138<br />
</td>
        <td>22.068<br />
</td>
        <td>22.799<br />
</td>
        <td>[&lt;1 0 0 2 -2|, &lt;0 2 3 1 7|]<br />
</td>
        <td>27/25 21/20 45/44<br />
</td>
    </tr>
    <tr>
        <td>Pentoid<br />
</td>
        <td>1.142<br />
</td>
        <td>21.771<br />
</td>
        <td>22.649<br />
</td>
        <td>[&lt;1 0 0 2 5|, &lt;0 2 3 1 -2|]<br />
</td>
        <td>27/25 21/20 99/98<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.148<br />
</td>
        <td>30.989<br />
</td>
        <td>32.521<br />
</td>
        <td>[&lt;1 0 -4 -5 -6|, &lt;0 1 4 5 6|]<br />
</td>
        <td>15/14 22/21 125/121<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.196<br />
</td>
        <td>19.922<br />
</td>
        <td>22.366<br />
</td>
        <td>[&lt;1 1 2 1 2|, &lt;0 2 1 6 5|]<br />
</td>
        <td>35/33 25/24 28/27<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.208<br />
</td>
        <td>25.57<br />
</td>
        <td>29.193<br />
</td>
        <td>[&lt;2 0 8 9 7|, &lt;0 1 -1 -1 0|]<br />
</td>
        <td>16/15 22/21 50/49<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.226<br />
</td>
        <td>19.454<br />
</td>
        <td>22.753<br />
</td>
        <td>[&lt;1 0 7 9 5|, &lt;0 1 -3 -4 -1|]<br />
</td>
        <td>21/20 33/32 45/44<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.258<br />
</td>
        <td>23.058<br />
</td>
        <td>28.153<br />
</td>
        <td>[&lt;1 0 4 -2 10|, &lt;0 1 -1 3 -4|]<br />
</td>
        <td>16/15 28/27 77/75<br />
</td>
    </tr>
    <tr>
        <td>Hystrix<br />
</td>
        <td>1.335<br />
</td>
        <td>19.86<br />
</td>
        <td>26.790<br />
</td>
        <td>[&lt;1 2 3 3 4|, &lt;0 -3 -5 -1 -4|]<br />
</td>
        <td>22/21 80/77 36/35<br />
</td>
    </tr>
    <tr>
        <td>Arnold<br />
</td>
        <td>1.340<br />
</td>
        <td>19.265<br />
</td>
        <td>26.141<br />
</td>
        <td>[&lt;1 0 -4 6 5|, &lt;0 1 4 -2 -1|]<br />
</td>
        <td>22/21 33/32 36/35<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.358<br />
</td>
        <td>22.998<br />
</td>
        <td>31.934<br />
</td>
        <td>[&lt;5 8 0 14 17|, &lt;0 0 1 0 0|]<br />
</td>
        <td>22/21 28/27 33/32<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.415<br />
</td>
        <td>18.282<br />
</td>
        <td>27.164<br />
</td>
        <td>[&lt;4 0 3 5 1|, &lt;0 1 1 1 2|]<br />
</td>
        <td>22/21 36/35 50/49<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.431<br />
</td>
        <td>20.956<br />
</td>
        <td>31.719<br />
</td>
        <td>[&lt;1 1 2 4 4|, &lt;0 2 1 -4 -2|]<br />
</td>
        <td>22/21 25/24 33/32<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.443<br />
</td>
        <td>20.107<br />
</td>
        <td>30.883<br />
</td>
        <td>[&lt;5 8 0 14 6|, &lt;0 0 1 0 1|]<br />
</td>
        <td>35/33 28/27 49/48<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.461<br />
</td>
        <td>20.67<br />
</td>
        <td>32.385<br />
</td>
        <td>[&lt;2 0 3 4 7|, &lt;0 2 1 1 0|]<br />
</td>
        <td>35/33 25/24 49/48<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.495<br />
</td>
        <td>19.317<br />
</td>
        <td>31.468<br />
</td>
        <td>[&lt;2 0 -5 -4 -6|, &lt;0 1 3 3 4|]<br />
</td>
        <td>22/21 28/27 50/49<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1.500<br />
</td>
        <td>19.693<br />
</td>
        <td>32.239<br />
</td>
        <td>[&lt;1 1 2 1 4|, &lt;0 2 1 6 -2|]<br />
</td>
        <td>25/24 28/27 33/32<br />
</td>
    </tr>
    <tr>
        <td>August<br />
</td>
        <td>1.506<br />
</td>
        <td>12.245<br />
</td>
        <td>20.191<br />
</td>
        <td>[&lt;3 0 7 -1 1|, &lt;0 1 0 2 2|]<br />
</td>
        <td>36/35 45/44 56/55<br />
</td>
    </tr>
    <tr>
        <td>Domineering<br />
</td>
        <td>1.523<br />
</td>
        <td>13.075<br />
</td>
        <td>21.978<br />
</td>
        <td>[&lt;1 0 -4 6 -6|, &lt;0 1 4 -2 6|]<br />
</td>
        <td>36/35 45/44 64/63<br />
</td>
    </tr>
    <tr>
        <td>Septimal<br />
</td>
        <td>1.564<br />
</td>
        <td>13.396<br />
</td>
        <td>23.524<br />
</td>
        <td>[&lt;7 11 16 0 24|, &lt;0 0 0 1 0|]<br />
</td>
        <td>25/24 33/32 45/44<br />
</td>
    </tr>
    <tr>
        <td>Diminished<br />
</td>
        <td>1.582<br />
</td>
        <td>12.367<br />
</td>
        <td>22.132<br />
</td>
        <td>[&lt;4 0 3 5 14|, &lt;0 1 1 1 0|]<br />
</td>
        <td>36/35 50/49 56/55<br />
</td>
    </tr>
    <tr>
        <td>Armodue<br />
</td>
        <td>1.603<br />
</td>
        <td>14.879<br />
</td>
        <td>27.211<br />
</td>
        <td>[&lt;1 0 7 -5 5|, &lt;0 1 -3 5 -1|]<br />
</td>
        <td>33/32 36/35 45/44<br />
</td>
    </tr>
    <tr>
        <td>Dichotic<br />
</td>
        <td>1.630<br />
</td>
        <td>16.311<br />
</td>
        <td>30.680<br />
</td>
        <td>[&lt;1 1 2 4 2|, &lt;0 2 1 -4 5|]<br />
</td>
        <td>25/24 45/44 64/63<br />
</td>
    </tr>
    <tr>
        <td>Opossum<br />
</td>
        <td>1.692<br />
</td>
        <td>11.146<br />
</td>
        <td>22.325<br />
</td>
        <td>[&lt;1 2 3 4 4|, &lt;0 -3 -5 -9 -4|]<br />
</td>
        <td>28/27 77/75 55/54<br />
</td>
    </tr>
    <tr>
        <td>Octokaidecal<br />
</td>
        <td>1.698<br />
</td>
        <td>15.008<br />
</td>
        <td>30.235<br />
</td>
        <td>[&lt;2 0 -5 -4 7|, &lt;0 1 3 3 0|]<br />
</td>
        <td>28/27 50/49 55/54<br />
</td>
    </tr>
    <tr>
        <td>Pajaric<br />
</td>
        <td>1.722<br />
</td>
        <td>11.548<br />
</td>
        <td>23.798<br />
</td>
        <td>[&lt;2 0 11 12 7|, &lt;0 1 -2 -2 0|]<br />
</td>
        <td>45/44 50/49 56/55<br />
</td>
    </tr>
    <tr>
        <td>Progression<br />
</td>
        <td>1.749<br />
</td>
        <td>12.314<br />
</td>
        <td>26.050<br />
</td>
        <td>[&lt;1 1 2 2 3|, &lt;0 5 3 7 4|]<br />
</td>
        <td>36/35 77/75 56/55<br />
</td>
    </tr>
    <tr>
        <td>Decimal<br />
</td>
        <td>1.751<br />
</td>
        <td>12.599<br />
</td>
        <td>26.712<br />
</td>
        <td>[&lt;2 0 3 4 -1|, &lt;0 2 1 1 5|]<br />
</td>
        <td>25/24 45/44 49/48<br />
</td>
    </tr>
    <tr>
        <td>Blacksmith<br />
</td>
        <td>1.825<br />
</td>
        <td>10.85<br />
</td>
        <td>24.641<br />
</td>
        <td>[&lt;5 8 0 14 29|, &lt;0 0 1 0 -1|]<br />
</td>
        <td>28/27 49/48 55/54<br />
</td>
    </tr>
    <tr>
        <td>Demolished<br />
</td>
        <td>1.831<br />
</td>
        <td>11.635<br />
</td>
        <td>26.574<br />
</td>
        <td>[&lt;4 0 3 5 -5|, &lt;0 1 1 1 3|]<br />
</td>
        <td>36/35 45/44 50/49<br />
</td>
    </tr>
    <tr>
        <td>Dominant<br />
</td>
        <td>1.864<br />
</td>
        <td>10.279<br />
</td>
        <td>24.180<br />
</td>
        <td>[&lt;1 0 -4 6 13|, &lt;0 1 4 -2 -6|]<br />
</td>
        <td>36/35 56/55 64/63<br />
</td>
    </tr>
    <tr>
        <td>Decimated<br />
</td>
        <td>1.886<br />
</td>
        <td>13.109<br />
</td>
        <td>31.456<br />
</td>
        <td>[&lt;2 0 3 4 10|, &lt;0 2 1 1 -2|]<br />
</td>
        <td>25/24 33/32 49/48<br />
</td>
    </tr>
    <tr>
        <td>Meanenneadecal<br />
</td>
        <td>1.918<br />
</td>
        <td>8.680<br />
</td>
        <td>21.423<br />
</td>
        <td>[&lt;1 0 -4 -13 -6|, &lt;0 1 4 10 6|]<br />
</td>
        <td>45/44 56/55 81/80<br />
</td>
    </tr>
    <tr>
        <td>Sidi<br />
</td>
        <td>1.958<br />
</td>
        <td>12.902<br />
</td>
        <td>32.957<br />
</td>
        <td>[&lt;1 3 3 6 7|, &lt;0 -4 -2 -9 -10|]<br />
</td>
        <td>25/24 45/44 99/98<br />
</td>
    </tr>
    <tr>
        <td>Ferrier<br />
</td>
        <td>1.993<br />
</td>
        <td>11.103<br />
</td>
        <td>29.200<br />
</td>
        <td>[&lt;5 8 0 14 -6|, &lt;0 0 1 0 2|]<br />
</td>
        <td>28/27 77/75 49/48<br />
</td>
    </tr>
    <tr>
        <td>Superpelog<br />
</td>
        <td>2.016<br />
</td>
        <td>10.640<br />
</td>
        <td>28.535<br />
</td>
        <td>[&lt;1 0 7 2 5|, &lt;0 2 -6 1 -2|]<br />
</td>
        <td>33/32 45/44 99/98<br />
</td>
    </tr>
    <tr>
        <td>Negri<br />
</td>
        <td>2.038<br />
</td>
        <td>9.594<br />
</td>
        <td>26.190<br />
</td>
        <td>[&lt;1 2 2 3 4|, &lt;0 -4 3 -2 -5|]<br />
</td>
        <td>45/44 49/48 56/55<br />
</td>
    </tr>
    <tr>
        <td>Inflated<br />
</td>
        <td>2.102<br />
</td>
        <td>10.843<br />
</td>
        <td>31.171<br />
</td>
        <td>[&lt;3 0 7 -6 -4|, &lt;0 1 0 3 3|]<br />
</td>
        <td>28/27 128/125 55/54<br />
</td>
    </tr>
    <tr>
        <td>Injera<br />
</td>
        <td>2.153<br />
</td>
        <td>7.728<br />
</td>
        <td>23.124<br />
</td>
        <td>[&lt;2 0 -8 -7 -12|, &lt;0 1 4 4 6|]<br />
</td>
        <td>45/44 50/49 99/98<br />
</td>
    </tr>
    <tr>
        <td>Negric<br />
</td>
        <td>2.198<br />
</td>
        <td>9.886<br />
</td>
        <td>30.617<br />
</td>
        <td>[&lt;1 2 2 3 3|, &lt;0 -4 3 -2 4|]<br />
</td>
        <td>33/32 77/75 49/48<br />
</td>
    </tr>
    <tr>
        <td>Triforce<br />
</td>
        <td>2.201<br />
</td>
        <td>8.427<br />
</td>
        <td>26.152<br />
</td>
        <td>[&lt;3 0 7 6 8|, &lt;0 2 0 1 1|]<br />
</td>
        <td>77/75 128/125 56/55<br />
</td>
    </tr>
    <tr>
        <td>Duodecim<br />
</td>
        <td>2.201<br />
</td>
        <td>9.839<br />
</td>
        <td>30.536<br />
</td>
        <td>[&lt;12 19 28 34 0|, &lt;0 0 0 0 1|]<br />
</td>
        <td>36/35 50/49 64/63<br />
</td>
    </tr>
    <tr>
        <td>Meanundeci<br />
</td>
        <td>2.204<br />
</td>
        <td>10.143<br />
</td>
        <td>31.539<br />
</td>
        <td>[&lt;1 0 -4 -13 5|, &lt;0 1 4 10 -1|]<br />
</td>
        <td>33/32 77/75 55/54<br />
</td>
    </tr>
    <tr>
        <td>Semafour<br />
</td>
        <td>2.212<br />
</td>
        <td>9.111<br />
</td>
        <td>28.510<br />
</td>
        <td>[&lt;1 0 -4 2 5|, &lt;0 2 8 1 -2|]<br />
</td>
        <td>33/32 49/48 55/54<br />
</td>
    </tr>
    <tr>
        <td>Augene<br />
</td>
        <td>2.286<br />
</td>
        <td>5.932<br />
</td>
        <td>19.613<br />
</td>
        <td>[&lt;3 0 7 18 20|, &lt;0 1 0 -2 -2|]<br />
</td>
        <td>56/55 64/63 100/99<br />
</td>
    </tr>
    <tr>
        <td>Godzilla<br />
</td>
        <td>2.343<br />
</td>
        <td>8.404<br />
</td>
        <td>28.947<br />
</td>
        <td>[&lt;1 0 -4 2 -6|, &lt;0 2 8 1 12|]<br />
</td>
        <td>45/44 49/48 81/80<br />
</td>
    </tr>
    <tr>
        <td>Darjeeling<br />
</td>
        <td>2.347<br />
</td>
        <td>8.002<br />
</td>
        <td>27.648<br />
</td>
        <td>[&lt;1 0 1 2 0|, &lt;0 6 5 3 13|]<br />
</td>
        <td>77/75 49/48 55/54<br />
</td>
    </tr>
    <tr>
        <td>Progress<br />
</td>
        <td>2.399<br />
</td>
        <td>8.662<br />
</td>
        <td>31.036<br />
</td>
        <td>[&lt;1 0 5 6 4|, &lt;0 3 -5 -6 -1|]<br />
</td>
        <td>77/75 56/55 64/63<br />
</td>
    </tr>
    <tr>
        <td>Hedgehog<br />
</td>
        <td>2.439<br />
</td>
        <td>6.273<br />
</td>
        <td>23.095<br />
</td>
        <td>[&lt;2 1 1 2 4|, &lt;0 3 5 5 4|]<br />
</td>
        <td>50/49 55/54 99/98<br />
</td>
    </tr>
    <tr>
        <td>Keemun<br />
</td>
        <td>2.468<br />
</td>
        <td>7.298<br />
</td>
        <td>27.410<br />
</td>
        <td>[&lt;1 0 1 2 4|, &lt;0 6 5 3 -2|]<br />
</td>
        <td>49/48 56/55 100/99<br />
</td>
    </tr>
    <tr>
        <td>Porcupine<br />
</td>
        <td>2.478<br />
</td>
        <td>5.703<br />
</td>
        <td>21.562<br />
</td>
        <td>[&lt;1 2 3 2 4|, &lt;0 -3 -5 6 -4|]<br />
</td>
        <td>55/54 64/63 100/99<br />
</td>
    </tr>
    <tr>
        <td>Pajara<br />
</td>
        <td>2.543<br />
</td>
        <td>5.151<br />
</td>
        <td>20.343<br />
</td>
        <td>[&lt;2 0 11 12 26|, &lt;0 1 -2 -2 -6|]<br />
</td>
        <td>50/49 99/98 176/175<br />
</td>
    </tr>
    <tr>
        <td>Nautilus<br />
</td>
        <td>2.548<br />
</td>
        <td>6.568<br />
</td>
        <td>26.023<br />
</td>
        <td>[&lt;1 2 3 3 4|, &lt;0 -6 -10 -3 -8|]<br />
</td>
        <td>49/48 55/54 245/242<br />
</td>
    </tr>
    <tr>
        <td>Pajarous<br />
</td>
        <td>2.718<br />
</td>
        <td>6.427<br />
</td>
        <td>28.349<br />
</td>
        <td>[&lt;2 0 11 12 -9|, &lt;0 1 -2 -2 5|]<br />
</td>
        <td>50/49 55/54 64/63<br />
</td>
    </tr>
    <tr>
        <td>Telepathy<br />
</td>
        <td>2.864<br />
</td>
        <td>5.631<br />
</td>
        <td>27.109<br />
</td>
        <td>[&lt;1 0 2 -1 -1|, &lt;0 5 1 12 14|]<br />
</td>
        <td>55/54 99/98 176/175<br />
</td>
    </tr>
    <tr>
        <td>Sensis<br />
</td>
        <td>2.98<br />
</td>
        <td>5.578<br />
</td>
        <td>28.680<br />
</td>
        <td>[&lt;1 6 8 11 6|, &lt;0 -7 -9 -13 -4|]<br />
</td>
        <td>56/55 100/99 245/243<br />
</td>
    </tr>
    <tr>
        <td>Suprapyth<br />
</td>
        <td>3.011<br />
</td>
        <td>6.264<br />
</td>
        <td>32.768<br />
</td>
        <td>[&lt;1 0 -12 6 13|, &lt;0 1 9 -2 -6|]<br />
</td>
        <td>55/54 64/63 99/98<br />
</td>
    </tr>
    <tr>
        <td>Porky<br />
</td>
        <td>3.02<br />
</td>
        <td>5.186<br />
</td>
        <td>27.268<br />
</td>
        <td>[&lt;1 2 3 5 4|, &lt;0 -3 -5 -16 -4|]<br />
</td>
        <td>55/54 100/99 225/224<br />
</td>
    </tr>
    <tr>
        <td>Meantone<br />
</td>
        <td>3.031<br />
</td>
        <td>3.218<br />
</td>
        <td>17.027<br />
</td>
        <td>[&lt;1 0 -4 -13 -25|, &lt;0 1 4 10 18|]<br />
</td>
        <td>81/80 99/98 126/125<br />
</td>
    </tr>
    <tr>
        <td>Ringo<br />
</td>
        <td>3.126<br />
</td>
        <td>5.902<br />
</td>
        <td>32.863<br />
</td>
        <td>[&lt;1 1 5 4 2|, &lt;0 2 -9 -4 5|]<br />
</td>
        <td>56/55 64/63 540/539<br />
</td>
    </tr>
    <tr>
        <td>Orwell<br />
</td>
        <td>3.242<br />
</td>
        <td>2.574<br />
</td>
        <td>15.231<br />
</td>
        <td>[&lt;1 0 3 1 3|, &lt;0 7 -3 8 2|]<br />
</td>
        <td>99/98 121/120 176/175<br />
</td>
    </tr>
    <tr>
        <td>Doublewide<br />
</td>
        <td>3.407<br />
</td>
        <td>4.988<br />
</td>
        <td>32.058<br />
</td>
        <td>[&lt;2 1 3 4 8|, &lt;0 4 3 3 -2|]<br />
</td>
        <td>50/49 875/864 99/98<br />
</td>
    </tr>
    <tr>
        <td>Superpyth<br />
</td>
        <td>3.410<br />
</td>
        <td>3.88<br />
</td>
        <td>24.976<br />
</td>
        <td>[&lt;1 0 -12 6 -22|, &lt;0 1 9 -2 16|]<br />
</td>
        <td>64/63 100/99 245/243<br />
</td>
    </tr>
    <tr>
        <td>Squares<br />
</td>
        <td>3.486<br />
</td>
        <td>3.240<br />
</td>
        <td>21.636<br />
</td>
        <td>[&lt;1 3 8 6 7|, &lt;0 -4 -16 -9 -10|]<br />
</td>
        <td>81/80 99/98 121/120<br />
</td>
    </tr>
    <tr>
        <td>Quasisupra<br />
</td>
        <td>3.49<br />
</td>
        <td>4.812<br />
</td>
        <td>32.203<br />
</td>
        <td>[&lt;1 0 23 6 13|, &lt;0 1 -13 -2 -6|]<br />
</td>
        <td>64/63 99/98 121/120<br />
</td>
    </tr>
    <tr>
        <td>Valentine<br />
</td>
        <td>3.651<br />
</td>
        <td>2.313<br />
</td>
        <td>16.687<br />
</td>
        <td>[&lt;1 1 2 3 3|, &lt;0 9 5 -3 7|]<br />
</td>
        <td>121/120 126/125 176/175<br />
</td>
    </tr>
    <tr>
        <td>Magic<br />
</td>
        <td>3.715<br />
</td>
        <td>2.741<br />
</td>
        <td>20.352<br />
</td>
        <td>[&lt;1 0 2 -1 6|, &lt;0 5 1 12 -8|]<br />
</td>
        <td>100/99 245/243 225/224<br />
</td>
    </tr>
    <tr>
        <td>Meanpop<br />
</td>
        <td>3.820<br />
</td>
        <td>2.770<br />
</td>
        <td>21.543<br />
</td>
        <td>[&lt;1 0 -4 -13 24|, &lt;0 1 4 10 -13|]<br />
</td>
        <td>81/80 126/125 540/539<br />
</td>
    </tr>
    <tr>
        <td>Mohajira<br />
</td>
        <td>3.863<br />
</td>
        <td>3.288<br />
</td>
        <td>26.064<br />
</td>
        <td>[&lt;1 1 0 6 2|, &lt;0 2 8 -11 5|]<br />
</td>
        <td>81/80 121/120 176/175<br />
</td>
    </tr>
    <tr>
        <td>Cassandra<br />
</td>
        <td>3.897<br />
</td>
        <td>2.929<br />
</td>
        <td>23.556<br />
</td>
        <td>[&lt;1 0 15 25 32|, &lt;0 1 -8 -14 -18|]<br />
</td>
        <td>245/242 100/99 225/224<br />
</td>
    </tr>
    <tr>
        <td>Nusecond<br />
</td>
        <td>3.927<br />
</td>
        <td>3.146<br />
</td>
        <td>25.621<br />
</td>
        <td>[&lt;1 3 4 5 5|, &lt;0 -11 -13 -17 -12|]<br />
</td>
        <td>99/98 121/120 126/125<br />
</td>
    </tr>
    <tr>
        <td>Migration<br />
</td>
        <td>3.935<br />
</td>
        <td>3.123<br />
</td>
        <td>25.516<br />
</td>
        <td>[&lt;1 1 0 -3 2|, &lt;0 2 8 20 5|]<br />
</td>
        <td>81/80 121/120 126/125<br />
</td>
    </tr>
    <tr>
        <td>Mothra<br />
</td>
        <td>3.99<br />
</td>
        <td>3.066<br />
</td>
        <td>25.642<br />
</td>
        <td>[&lt;1 1 0 3 5|, &lt;0 3 12 -1 -8|]<br />
</td>
        <td>81/80 99/98 385/384<br />
</td>
    </tr>
    <tr>
        <td>Octacot<br />
</td>
        <td>4.070<br />
</td>
        <td>2.785<br />
</td>
        <td>24.078<br />
</td>
        <td>[&lt;1 1 1 2 2|, &lt;0 8 18 11 20|]<br />
</td>
        <td>245/242 100/99 243/242<br />
</td>
    </tr>
    <tr>
        <td>Myna<br />
</td>
        <td>4.127<br />
</td>
        <td>1.903<br />
</td>
        <td>16.842<br />
</td>
        <td>[&lt;1 9 9 8 22|, &lt;0 -10 -9 -7 -25|]<br />
</td>
        <td>126/125 176/175 243/242<br />
</td>
    </tr>
    <tr>
        <td>Superkleismic<br />
</td>
        <td>4.137<br />
</td>
        <td>2.888<br />
</td>
        <td>25.659<br />
</td>
        <td>[&lt;1 4 5 2 4|, &lt;0 -9 -10 3 -2|]<br />
</td>
        <td>245/242 100/99 385/384<br />
</td>
    </tr>
    <tr>
        <td>Würschmidt<br />
</td>
        <td>4.344<br />
</td>
        <td>2.533<br />
</td>
        <td>24.413<br />
</td>
        <td>[&lt;1 7 3 15 17|, &lt;0 -8 -1 -18 -20|]<br />
</td>
        <td>99/98 176/175 243/242<br />
</td>
    </tr>
    <tr>
        <td>Miracle<br />
</td>
        <td>4.405<br />
</td>
        <td>1.083<br />
</td>
        <td>10.684<br />
</td>
        <td>[&lt;1 1 3 3 2|, &lt;0 6 -7 -2 15|]<br />
</td>
        <td>225/224 385/384 441/440<br />
</td>
    </tr>
    <tr>
        <td>Mosura<br />
</td>
        <td>4.411<br />
</td>
        <td>3.17<br />
</td>
        <td>31.334<br />
</td>
        <td>[&lt;1 1 0 3 -1|, &lt;0 3 12 -1 23|]<br />
</td>
        <td>81/80 1029/1024 540/539<br />
</td>
    </tr>
    <tr>
        <td>Sensus<br />
</td>
        <td>4.503<br />
</td>
        <td>2.882<br />
</td>
        <td>29.486<br />
</td>
        <td>[&lt;1 6 8 11 23|, &lt;0 -7 -9 -13 -31|]<br />
</td>
        <td>245/243 126/125 176/175<br />
</td>
    </tr>
    <tr>
        <td>Shrutar<br />
</td>
        <td>4.53<br />
</td>
        <td>2.563<br />
</td>
        <td>26.489<br />
</td>
        <td>[&lt;2 1 9 -2 8|, &lt;0 2 -4 7 -1|]<br />
</td>
        <td>121/120 245/243 176/175<br />
</td>
    </tr>
    <tr>
        <td>Revelation<br />
</td>
        <td>4.531<br />
</td>
        <td>3.187<br />
</td>
        <td>32.946<br />
</td>
        <td>[&lt;1 1 3 3 5|, &lt;0 6 -7 -2 -16|]<br />
</td>
        <td>99/98 176/175 1029/1024<br />
</td>
    </tr>
    <tr>
        <td>Tritonic<br />
</td>
        <td>4.596<br />
</td>
        <td>2.234<br />
</td>
        <td>23.659<br />
</td>
        <td>[&lt;1 4 -3 -3 2|, &lt;0 -5 11 12 3|]<br />
</td>
        <td>121/120 225/224 441/440<br />
</td>
    </tr>
    <tr>
        <td>Bunya<br />
</td>
        <td>4.833<br />
</td>
        <td>2.722<br />
</td>
        <td>31.332<br />
</td>
        <td>[&lt;1 1 1 -1 2|, &lt;0 4 9 26 10|]<br />
</td>
        <td>100/99 225/224 243/242<br />
</td>
    </tr>
    <tr>
        <td>Diaschismic<br />
</td>
        <td>5.048<br />
</td>
        <td>2.023<br />
</td>
        <td>25.034<br />
</td>
        <td>[&lt;2 0 11 31 45|, &lt;0 1 -2 -8 -12|]<br />
</td>
        <td>126/125 5488/5445 176/175<br />
</td>
    </tr>
    <tr>
        <td>Septimin<br />
</td>
        <td>5.089<br />
</td>
        <td>2.496<br />
</td>
        <td>31.309<br />
</td>
        <td>[&lt;1 4 1 5 5|, &lt;0 -11 6 -10 -7|]<br />
</td>
        <td>2401/2376 225/224 385/384<br />
</td>
    </tr>
    <tr>
        <td>Witchcraft<br />
</td>
        <td>5.419<br />
</td>
        <td>2.204<br />
</td>
        <td>30.706<br />
</td>
        <td>[&lt;1 0 2 -1 -7|, &lt;0 5 1 12 33|]<br />
</td>
        <td>245/243 225/224 441/440<br />
</td>
    </tr>
    <tr>
        <td>Thuja<br />
</td>
        <td>5.622<br />
</td>
        <td>2.233<br />
</td>
        <td>33.078<br />
</td>
        <td>[&lt;1 8 5 -2 4|, &lt;0 -12 -5 9 -1|]<br />
</td>
        <td>1344/1331 126/125 176/175<br />
</td>
    </tr>
    <tr>
        <td>Hemiwur<br />
</td>
        <td>5.723<br />
</td>
        <td>1.918<br />
</td>
        <td>29.270<br />
</td>
        <td>[&lt;1 15 4 7 11|, &lt;0 -16 -2 -5 -9|]<br />
</td>
        <td>121/120 176/175 1375/1372<br />
</td>
    </tr>
    <tr>
        <td>Rodan<br />
</td>
        <td>5.754<br />
</td>
        <td>1.50<br />
</td>
        <td>23.093<br />
</td>
        <td>[&lt;1 1 -1 3 6|, &lt;0 3 17 -1 -13|]<br />
</td>
        <td>245/243 385/384 441/440<br />
</td>
    </tr>
    <tr>
        <td>Echidna<br />
</td>
        <td>5.898<br />
</td>
        <td>1.62<br />
</td>
        <td>25.987<br />
</td>
        <td>[&lt;2 1 9 2 12|, &lt;0 3 -6 5 -7|]<br />
</td>
        <td>176/175 896/891 540/539<br />
</td>
    </tr>
    <tr>
        <td>Semisept<br />
</td>
        <td>5.969<br />
</td>
        <td>1.373<br />
</td>
        <td>22.476<br />
</td>
        <td>[&lt;1 12 6 12 20|, &lt;0 -17 -6 -15 -27|]<br />
</td>
        <td>1331/1323 176/175 540/539<br />
</td>
    </tr>
    <tr>
        <td>Newspeak<br />
</td>
        <td>6.006<br />
</td>
        <td>1.901<br />
</td>
        <td>31.438<br />
</td>
        <td>[&lt;1 0 3 1 -4|, &lt;0 7 -3 8 33|]<br />
</td>
        <td>1728/1715 225/224 441/440<br />
</td>
    </tr>
    <tr>
        <td>Hemififths<br />
</td>
        <td>6.148<br />
</td>
        <td>1.367<br />
</td>
        <td>23.498<br />
</td>
        <td>[&lt;1 1 -5 -1 2|, &lt;0 2 25 13 5|]<br />
</td>
        <td>896/891 243/242 441/440<br />
</td>
    </tr>
    <tr>
        <td>Garibaldi<br />
</td>
        <td>6.365<br />
</td>
        <td>1.504<br />
</td>
        <td>27.396<br />
</td>
        <td>[&lt;1 0 15 25 -33|, &lt;0 1 -8 -14 23|]<br />
</td>
        <td>2200/2187 225/224 385/384<br />
</td>
    </tr>
    <tr>
        <td>Wizard<br />
</td>
        <td>6.421<br />
</td>
        <td>1.003<br />
</td>
        <td>18.539<br />
</td>
        <td>[&lt;2 1 5 2 8|, &lt;0 6 -1 10 -3|]<br />
</td>
        <td>225/224 385/384 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Slender<br />
</td>
        <td>6.727<br />
</td>
        <td>1.269<br />
</td>
        <td>25.342<br />
</td>
        <td>[&lt;1 2 2 3 4|, &lt;0 -13 10 -6 -17|]<br />
</td>
        <td>1331/1323 225/224 385/384<br />
</td>
    </tr>
    <tr>
        <td>Compton<br />
</td>
        <td>6.767<br />
</td>
        <td>1.102<br />
</td>
        <td>22.235<br />
</td>
        <td>[&lt;12 19 0 -22 -42|, &lt;0 0 1 2 3|]<br />
</td>
        <td>225/224 4375/4356 441/440<br />
</td>
    </tr>
    <tr>
        <td>Hemithirds<br />
</td>
        <td>7.040<br />
</td>
        <td>.882<br />
</td>
        <td>19.003<br />
</td>
        <td>[&lt;1 4 2 2 7|, &lt;0 -15 2 5 -22|]<br />
</td>
        <td>3136/3125 385/384 441/440<br />
</td>
    </tr>
    <tr>
        <td>Catakleismic<br />
</td>
        <td>7.254<br />
</td>
        <td>.965<br />
</td>
        <td>21.849<br />
</td>
        <td>[&lt;1 0 1 -3 9|, &lt;0 6 5 22 -21|]<br />
</td>
        <td>225/224 385/384 4375/4374<br />
</td>
    </tr>
    <tr>
        <td>Harry<br />
</td>
        <td>7.373<br />
</td>
        <td>.682<br />
</td>
        <td>15.867<br />
</td>
        <td>[&lt;2 4 7 7 9|, &lt;0 -6 -17 -10 -15|]<br />
</td>
        <td>243/242 441/440 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Pluto<br />
</td>
        <td>7.524<br />
</td>
        <td>1.24<br />
</td>
        <td>29.844<br />
</td>
        <td>[&lt;1 5 15 15 2|, &lt;0 -7 -26 -25 3|]<br />
</td>
        <td>896/891 1375/1372 540/539<br />
</td>
    </tr>
    <tr>
        <td>Unidec<br />
</td>
        <td>7.532<br />
</td>
        <td>.642<br />
</td>
        <td>15.479<br />
</td>
        <td>[&lt;2 5 8 5 6|, &lt;0 -6 -11 2 3|]<br />
</td>
        <td>385/384 441/440 12005/11979<br />
</td>
    </tr>
    <tr>
        <td>Ennealimmic<br />
</td>
        <td>7.578<br />
</td>
        <td>.835<br />
</td>
        <td>20.347<br />
</td>
        <td>[&lt;9 1 1 12 -2|, &lt;0 2 3 2 5|]<br />
</td>
        <td>4375/4356 243/242 441/440<br />
</td>
    </tr>
    <tr>
        <td>Tritikleismic<br />
</td>
        <td>7.587<br />
</td>
        <td>.792<br />
</td>
        <td>19.333<br />
</td>
        <td>[&lt;3 0 3 10 8|, &lt;0 6 5 -2 3|]<br />
</td>
        <td>385/384 441/440 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Hemiwürschmidt<br />
</td>
        <td>7.793<br />
</td>
        <td>.825<br />
</td>
        <td>21.069<br />
</td>
        <td>[&lt;1 15 4 7 37|, &lt;0 -16 -2 -5 -40|]<br />
</td>
        <td>243/242 3136/3125 441/440<br />
</td>
    </tr>
    <tr>
        <td>Marvolo<br />
</td>
        <td>7.935<br />
</td>
        <td>1.101<br />
</td>
        <td>28.965<br />
</td>
        <td>[&lt;1 2 1 1 2|, &lt;0 -6 19 26 21|]<br />
</td>
        <td>225/224 441/440 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Bikleismic<br />
</td>
        <td>8.191<br />
</td>
        <td>1.057<br />
</td>
        <td>29.319<br />
</td>
        <td>[&lt;2 0 2 -6 -1|, &lt;0 6 5 22 15|]<br />
</td>
        <td>225/224 4375/4356 243/242<br />
</td>
    </tr>
    <tr>
        <td>Catalytic<br />
</td>
        <td>8.212<br />
</td>
        <td>1.092<br />
</td>
        <td>30.422<br />
</td>
        <td>[&lt;1 0 1 -3 -10|, &lt;0 6 5 22 51|]<br />
</td>
        <td>225/224 441/440 4375/4374<br />
</td>
    </tr>
    <tr>
        <td>Enneaportent<br />
</td>
        <td>8.286<br />
</td>
        <td>1.076<br />
</td>
        <td>30.426<br />
</td>
        <td>[&lt;9 0 28 11 24|, &lt;0 2 -1 2 1|]<br />
</td>
        <td>225/224 385/384 12005/11979<br />
</td>
    </tr>
    <tr>
        <td>Marvo<br />
</td>
        <td>8.731<br />
</td>
        <td>1.027<br />
</td>
        <td>31.685<br />
</td>
        <td>[&lt;1 5 12 29 12|, &lt;0 -6 -17 -46 -15|]<br />
</td>
        <td>225/224 243/242 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Octoid<br />
</td>
        <td>9.170<br />
</td>
        <td>.421<br />
</td>
        <td>14.097<br />
</td>
        <td>[&lt;8 1 3 3 16|, &lt;0 3 4 5 3|]<br />
</td>
        <td>1375/1372 540/539 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Tertia<br />
</td>
        <td>9.182<br />
</td>
        <td>.899<br />
</td>
        <td>30.171<br />
</td>
        <td>[&lt;1 3 2 3 5|, &lt;0 -22 5 -3 -24|]<br />
</td>
        <td>1331/1323 385/384 1375/1372<br />
</td>
    </tr>
    <tr>
        <td>Guiron<br />
</td>
        <td>9.377<br />
</td>
        <td>.767<br />
</td>
        <td>26.648<br />
</td>
        <td>[&lt;1 1 7 3 -2|, &lt;0 3 -24 -1 28|]<br />
</td>
        <td>10976/10935 385/384 441/440<br />
</td>
    </tr>
    <tr>
        <td>Neominor<br />
</td>
        <td>9.493<br />
</td>
        <td>.788<br />
</td>
        <td>27.959<br />
</td>
        <td>[&lt;1 3 12 8 7|, &lt;0 -6 -41 -22 -15|]<br />
</td>
        <td>243/242 35937/35840 441/440<br />
</td>
    </tr>
    <tr>
        <td>Grendel<br />
</td>
        <td>9.729<br />
</td>
        <td>.537<br />
</td>
        <td>19.845<br />
</td>
        <td>[&lt;1 9 2 7 17|, &lt;0 -23 1 -13 -42|]<br />
</td>
        <td>1375/1372 540/539 5632/5625<br />
</td>
    </tr>
    <tr>
        <td>Hemiseven<br />
</td>
        <td>9.733<br />
</td>
        <td>.770<br />
</td>
        <td>28.467<br />
</td>
        <td>[&lt;1 4 14 2 -5|, &lt;0 -6 -29 2 21|]<br />
</td>
        <td>19683/19600 385/384 441/440<br />
</td>
    </tr>
    <tr>
        <td>Sqrtphi<br />
</td>
        <td>9.756<br />
</td>
        <td>.687<br />
</td>
        <td>25.515<br />
</td>
        <td>[&lt;1 12 11 16 17|, &lt;0 -30 -25 -38 -39|]<br />
</td>
        <td>4375/4356 1375/1372 540/539<br />
</td>
    </tr>
    <tr>
        <td>Commatic<br />
</td>
        <td>9.831<br />
</td>
        <td>.810<br />
</td>
        <td>30.461<br />
</td>
        <td>[&lt;2 3 4 5 6|, &lt;0 5 19 18 27|]<br />
</td>
        <td>3388/3375 8019/8000 441/440<br />
</td>
    </tr>
    <tr>
        <td>Sesquart<br />
</td>
        <td>9.891<br />
</td>
        <td>.772<br />
</td>
        <td>29.306<br />
</td>
        <td>[&lt;1 1 7 5 2|, &lt;0 4 -32 -15 10|]<br />
</td>
        <td>243/242 16384/16335 441/440<br />
</td>
    </tr>
    <tr>
        <td>Quadritikleismic<br />
</td>
        <td>10.315<br />
</td>
        <td>.575<br />
</td>
        <td>23.406<br />
</td>
        <td>[&lt;4 0 4 7 17|, &lt;0 6 5 4 -3|]<br />
</td>
        <td>385/384 1375/1372 9801/9800<br />
</td>
    </tr>
    <tr>
        <td>Mirkat<br />
</td>
        <td>10.575<br />
</td>
        <td>.521<br />
</td>
        <td>22.126<br />
</td>
        <td>[&lt;3 2 1 2 9|, &lt;0 6 13 14 3|]<br />
</td>
        <td>8019/8000 1375/1372 540/539<br />
</td>
    </tr>
    <tr>
        <td>Bisupermajor<br />
</td>
        <td>10.578<br />
</td>
        <td>.755<br />
</td>
        <td>32.080<br />
</td>
        <td>[&lt;2 1 6 1 8|, &lt;0 8 -5 17 -4|]<br />
</td>
        <td>3388/3375 385/384 9801/9800<br />
</td>
    </tr>
    <tr>
        <td>Cotritone<br />
</td>
        <td>10.735<br />
</td>
        <td>.740<br />
</td>
        <td>32.225<br />
</td>
        <td>[&lt;1 17 9 10 5|, &lt;0 -30 -13 -14 -3|]<br />
</td>
        <td>385/384 1375/1372 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Kwai<br />
</td>
        <td>11.134<br />
</td>
        <td>.567<br />
</td>
        <td>26.219<br />
</td>
        <td>[&lt;1 0 -50 -40 32|, &lt;0 1 33 27 -18|]<br />
</td>
        <td>16384/16335 1375/1372 540/539<br />
</td>
    </tr>
    <tr>
        <td>Triwell<br />
</td>
        <td>11.163<br />
</td>
        <td>.642<br />
</td>
        <td>29.807<br />
</td>
        <td>[&lt;1 7 0 1 13|, &lt;0 -21 9 7 -37|]<br />
</td>
        <td>385/384 441/440 456533/455625<br />
</td>
    </tr>
    <tr>
        <td>Supers<br />
</td>
        <td>11.476<br />
</td>
        <td>.580<br />
</td>
        <td>28.240<br />
</td>
        <td>[&lt;2 1 -12 2 -9|, &lt;0 3 23 5 22|]<br />
</td>
        <td>5120/5103 540/539 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Ennealiminal<br />
</td>
        <td>11.678<br />
</td>
        <td>.621<br />
</td>
        <td>31.123<br />
</td>
        <td>[&lt;9 1 1 12 51|, &lt;0 2 3 2 -3|]<br />
</td>
        <td>385/384 1375/1372 4375/4374<br />
</td>
    </tr>
    <tr>
        <td>Bischismic<br />
</td>
        <td>11.743<br />
</td>
        <td>.557<br />
</td>
        <td>28.160<br />
</td>
        <td>[&lt;2 0 30 69 102|, &lt;0 1 -8 -20 -30|]<br />
</td>
        <td>3136/3125 8019/8000 441/440<br />
</td>
    </tr>
    <tr>
        <td>Septisuperfourth<br />
</td>
        <td>12.086<br />
</td>
        <td>.464<br />
</td>
        <td>24.619<br />
</td>
        <td>[&lt;2 4 4 7 6|, &lt;0 -9 7 -15 10|]<br />
</td>
        <td>540/539 4000/3993 5632/5625<br />
</td>
    </tr>
    <tr>
        <td>Amity<br />
</td>
        <td>12.537<br />
</td>
        <td>.559<br />
</td>
        <td>31.506<br />
</td>
        <td>[&lt;1 3 6 -2 21|, &lt;0 -5 -13 17 -62|]<br />
</td>
        <td>5120/5103 540/539 5632/5625<br />
</td>
    </tr>
    <tr>
        <td>Quincy<br />
</td>
        <td>12.684<br />
</td>
        <td>.537<br />
</td>
        <td>30.875<br />
</td>
        <td>[&lt;1 2 3 3 4|, &lt;0 -30 -49 -14 -39|]<br />
</td>
        <td>441/440 4000/3993 41503/41472<br />
</td>
    </tr>
    <tr>
        <td>Octowerck<br />
</td>
        <td>13.282<br />
</td>
        <td>.486<br />
</td>
        <td>30.159<br />
</td>
        <td>[&lt;8 0 -11 14 15|, &lt;0 3 7 2 3|]<br />
</td>
        <td>441/440 8019/8000 41503/41472<br />
</td>
    </tr>
    <tr>
        <td>Hemiamity<br />
</td>
        <td>13.714<br />
</td>
        <td>.478<br />
</td>
        <td>31.307<br />
</td>
        <td>[&lt;2 1 -1 13 13|, &lt;0 5 13 -17 -14|]<br />
</td>
        <td>5120/5103 3025/3024 4375/4374<br />
</td>
    </tr>
    <tr>
        <td>Eris<br />
</td>
        <td>13.875<br />
</td>
        <td>.414<br />
</td>
        <td>27.621<br />
</td>
        <td>[&lt;1 10 0 6 20|, &lt;0 -29 8 -11 -57|]<br />
</td>
        <td>1375/1372 540/539 65625/65536<br />
</td>
    </tr>
    <tr>
        <td>Unthirds<br />
</td>
        <td>14.390<br />
</td>
        <td>.323<br />
</td>
        <td>22.926<br />
</td>
        <td>[&lt;1 29 33 25 25|, &lt;0 -42 -47 -34 -33|]<br />
</td>
        <td>2401/2400, 3025/3024, 4000/3993<br />
</td>
    </tr>
    <tr>
        <td>Alphaquarter<br />
</td>
        <td>14.588<br />
</td>
        <td>.408<br />
</td>
        <td>29.638<br />
</td>
        <td>[&lt;1 2 2 0 3|, &lt;0 -9 7 61 10|]<br />
</td>
        <td>5120/5103 4000/3993 3025/3024<br />
</td>
    </tr>
    <tr>
        <td>Hemiennealimmal<br />
</td>
        <td>14.648<br />
</td>
        <td>.0860<br />
</td>
        <td>6.283<br />
</td>
        <td>[&lt;18 0 -1 22 48|, &lt;0 2 3 2 1|]<br />
</td>
        <td>2401/2400 3025/3024 4375/4374<br />
</td>
    </tr>
    <tr>
        <td>Vishnu<br />
</td>
        <td>14.963<br />
</td>
        <td>.187<br />
</td>
        <td>14.180<br />
</td>
        <td>[&lt;2 4 5 10 10|, &lt;0 -7 -3 -37 -26|]<br />
</td>
        <td>3025/3024 4375/4374 5632/5625<br />
</td>
    </tr>
    <tr>
        <td>Quanharuk<br />
</td>
        <td>15.170<br />
</td>
        <td>.407<br />
</td>
        <td>31.549<br />
</td>
        <td>[&lt;1 0 15 12 -7|, &lt;0 5 -40 -29 33|]<br />
</td>
        <td>1375/1372 540/539 32805/32768<br />
</td>
    </tr>
    <tr>
        <td>Sternscape<br />
</td>
        <td>15.352<br />
</td>
        <td>.406<br />
</td>
        <td>32.096<br />
</td>
        <td>[&lt;6 3 2 6 11|, &lt;0 6 11 10 9|]<br />
</td>
        <td>540/539 4000/3993 137781/137500<br />
</td>
    </tr>
    <tr>
        <td>Pogo<br />
</td>
        <td>15.953<br />
</td>
        <td>.378<br />
</td>
        <td>31.857<br />
</td>
        <td>[&lt;2 1 22 2 25|, &lt;0 3 -24 5 -25|]<br />
</td>
        <td>540/539 4000/3993 32805/32768<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Junk temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Junk temperaments</h1>


<table class="wiki_table">
    <tr>
        <td>Name<br />
</td>
        <td>Complexity<br />
</td>
        <td>Error<br />
</td>
        <td>Badness<br />
</td>
        <td>Mapping<br />
</td>
        <td>Commas<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.193<br />
</td>
        <td>327.406<br />
</td>
        <td>17.646<br />
</td>
        <td>[&lt;1 2 2 3 0|, &lt;0 0 0 0 1|]<br />
</td>
        <td>4/3 5/3 7/6<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.228<br />
</td>
        <td>385.465<br />
</td>
        <td>27.274<br />
</td>
        <td>[&lt;1 2 2 0 3|, &lt;0 0 0 1 0|]<br />
</td>
        <td>4/3 5/3 11/6<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.267<br />
</td>
        <td>336.13<br />
</td>
        <td>30.988<br />
</td>
        <td>[&lt;1 2 2 0 1|, &lt;0 0 0 1 1|]<br />
</td>
        <td>4/3 5/3 14/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.319<br />
</td>
        <td>218.143<br />
</td>
        <td>27.130<br />
</td>
        <td>[&lt;1 2 0 3 1|, &lt;0 0 1 0 1|]<br />
</td>
        <td>4/3 7/6 11/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.324<br />
</td>
        <td>253.143<br />
</td>
        <td>32.311<br />
</td>
        <td>[&lt;1 2 0 0 1|, &lt;0 0 1 1 1|]<br />
</td>
        <td>4/3 7/5 11/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.328<br />
</td>
        <td>164.655<br />
</td>
        <td>21.432<br />
</td>
        <td>[&lt;1 0 1 1 2|, &lt;0 1 1 1 1|]<br />
</td>
        <td>6/5 7/5 11/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.354<br />
</td>
        <td>167.706<br />
</td>
        <td>24.774<br />
</td>
        <td>[&lt;1 0 2 1 2|, &lt;0 1 0 1 1|]<br />
</td>
        <td>5/4 7/6 12/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.369<br />
</td>
        <td>153.296<br />
</td>
        <td>24.223<br />
</td>
        <td>[&lt;1 0 2 1 3|, &lt;0 1 0 1 0|]<br />
</td>
        <td>5/4 7/6 11/8<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.375<br />
</td>
        <td>124.872<br />
</td>
        <td>20.250<br />
</td>
        <td>[&lt;2 3 5 6 0|, &lt;0 0 0 0 1|]<br />
</td>
        <td>6/5 8/7 9/7<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.390<br />
</td>
        <td>188.818<br />
</td>
        <td>32.775<br />
</td>
        <td>[&lt;1 0 2 3 2|, &lt;0 1 0 0 1|]<br />
</td>
        <td>5/4 8/7 12/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.406<br />
</td>
        <td>110.926<br />
</td>
        <td>20.608<br />
</td>
        <td>[&lt;1 0 1 3 2|, &lt;0 1 1 0 1|]<br />
</td>
        <td>6/5 8/7 11/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.408<br />
</td>
        <td>125.430<br />
</td>
        <td>23.415<br />
</td>
        <td>[&lt;1 0 1 0 2|, &lt;0 1 1 2 1|]<br />
</td>
        <td>6/5 9/7 11/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.452<br />
</td>
        <td>94.454<br />
</td>
        <td>20.943<br />
</td>
        <td>[&lt;1 0 -1 1 0|, &lt;0 1 2 1 2|]<br />
</td>
        <td>7/6 10/9 11/9<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.455<br />
</td>
        <td>110.141<br />
</td>
        <td>24.702<br />
</td>
        <td>[&lt;2 3 5 0 7|, &lt;0 0 0 1 0|]<br />
</td>
        <td>6/5 9/8 11/10<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.471<br />
</td>
        <td>104.885<br />
</td>
        <td>24.915<br />
</td>
        <td>[&lt;1 0 -1 1 2|, &lt;0 1 2 1 1|]<br />
</td>
        <td>7/6 10/9 12/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.483<br />
</td>
        <td>125.665<br />
</td>
        <td>31.158<br />
</td>
        <td>[&lt;1 0 1 0 -1|, &lt;0 1 1 2 3|]<br />
</td>
        <td>6/5 9/7 22/21]<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.508<br />
</td>
        <td>117.970<br />
</td>
        <td>31.811<br />
</td>
        <td>[&lt;2 3 5 0 1|, &lt;0 0 0 1 1|]<br />
</td>
        <td>6/5 9/8 22/21<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.549<br />
</td>
        <td>103.420<br />
</td>
        <td>31.715<br />
</td>
        <td>[&lt;2 3 0 6 7|, &lt;0 0 1 0 0|]<br />
</td>
        <td>8/7 9/7 12/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.550<br />
</td>
        <td>86.198<br />
</td>
        <td>26.496<br />
</td>
        <td>[&lt;3 5 7 8 0|, &lt;0 0 0 0 1|]<br />
</td>
        <td>7/6 10/9 16/15<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.557<br />
</td>
        <td>60.511<br />
</td>
        <td>18.993<br />
</td>
        <td>[&lt;2 3 0 1 2|, &lt;0 0 1 1 1|]<br />
</td>
        <td>9/8 11/10 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.567<br />
</td>
        <td>71.691<br />
</td>
        <td>23.207<br />
</td>
        <td>[&lt;1 0 -1 3 2|, &lt;0 1 2 0 1|]<br />
</td>
        <td>8/7 10/9 12/11<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.574<br />
</td>
        <td>93.134<br />
</td>
        <td>30.760<br />
</td>
        <td>[&lt;1 0 -1 3 0|, &lt;0 1 2 0 2|]<br />
</td>
        <td>8/7 10/9 11/9<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.575<br />
</td>
        <td>60.585<br />
</td>
        <td>20.049<br />
</td>
        <td>[&lt;1 0 4 3 2|, &lt;0 1 -1 0 1|]<br />
</td>
        <td>8/7 12/11 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.588<br />
</td>
        <td>78.370<br />
</td>
        <td>26.952<br />
</td>
        <td>[&lt;1 0 4 3 5|, &lt;0 1 -1 0 -1|]<br />
</td>
        <td>8/7 11/10 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.606<br />
</td>
        <td>60.327<br />
</td>
        <td>21.810<br />
</td>
        <td>[&lt;2 3 0 1 7|, &lt;0 0 1 1 0|]<br />
</td>
        <td>9/8 12/11 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.622<br />
</td>
        <td>69.361<br />
</td>
        <td>26.170<br />
</td>
        <td>[&lt;1 0 -1 -2 2|, &lt;0 1 2 3 1|]<br />
</td>
        <td>10/9 12/11 15/14<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>.645<br />
</td>
        <td>82.949<br />
</td>
        <td>33.250<br />
</td>
        <td>[&lt;1 0 -1 1 5|, &lt;0 1 2 1 -1|]<br />
</td>
        <td>7/6 10/9 33/32<br />
</td>
    </tr>
</table>

</body></html>