Dreyblatt tuning system
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author xenjacob and made on 2007-09-14 13:51:07 UTC.
- The original revision id was 7975019.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
from Arnold Dreyblatt: //Tuning Systems Explanation//, [[http://www.dreyblatt.net/html/music.php?id=67|www.dreyblatt.net/html/music.php?id=67]] The //Dreyblatt Tuning System// is calculated from the third, fifth, seventh, ninth and eleventh overtones and their multiples in the following pattern: || 1 || 3 || 5 || 7 || 9 || 11 || || 3 || 9 || 15 || 21 || 27 || 33 || || 5 || 15 || 25 || 35 || 45 || 55 || || 7 || 21 || 35 || 49 || 63 || 77 || || 9 || 27 || 45 || 63 || 81 || 99 || || 11 || 33 || 55 || 77 || 99 || 121 || These mathematically related overtones are heard as tonal relationships when they are transposed and sounded above a fundamental tone. In this process of transposition from their position in the natural overtone series, these tones fall (unequally) in the span of one octave in the following order: 1, 33, 35, 9, 77, 5, 81, 21, [11,] 45, 3, 49, 99, 25, 27, 55, 7, 15, 121, 63, (2) These tones are performed in "just intonation' based on a fundamental tone of "F". || Note || Freq. || Partial || Cents || || F || 349.2 || 1 || 0 || || F# || 360.11 || 33 || -47 || || G || 381.93 || 35 || -45 || || G# || 392.85 || 9 || +4 || || G# || 420.13 || 77 || +20 || || A || 436.5 || 5 || -14 || || A || 441.95 || 81 || +8 || || A# || 458.32 || 21 || -29 || || B || 480.15 || 11 || -49 || || B || 491.06 || 45 || -10 || || C || 523.8 || 3 || +2 || || C || 534.71 || 49 || +38 || || C# || 540.16 || 99 || -45 || || C# || 545.62 || 25 || -28 || || D || 589.27 || 27 || +6 || || D || 600.18 || 55 || +37 || || D# || 611.1 || 7 || -31 || || E || 654.75 || 15 || -12 || || E || 660.20 || 121 || +2 || || F || 687.48 || 63 || -27 ||
Original HTML content:
<html><head><title>Arnold Dreyblatt</title></head><body>from Arnold Dreyblatt: <em>Tuning Systems Explanation</em>, <a class="wiki_link_ext" href="http://www.dreyblatt.net/html/music.php?id=67" rel="nofollow">www.dreyblatt.net/html/music.php?id=67</a><br /> <br /> The <em>Dreyblatt Tuning System</em> is calculated from the third, fifth, seventh, ninth and eleventh overtones and their multiples in the following pattern:<br /> <table class="wiki_table"> <tr> <td>1<br /> </td> <td>3<br /> </td> <td>5<br /> </td> <td>7<br /> </td> <td>9<br /> </td> <td>11<br /> </td> </tr> <tr> <td>3<br /> </td> <td>9<br /> </td> <td>15<br /> </td> <td>21<br /> </td> <td>27<br /> </td> <td>33<br /> </td> </tr> <tr> <td>5<br /> </td> <td>15<br /> </td> <td>25<br /> </td> <td>35<br /> </td> <td>45<br /> </td> <td>55<br /> </td> </tr> <tr> <td>7<br /> </td> <td>21<br /> </td> <td>35<br /> </td> <td>49<br /> </td> <td>63<br /> </td> <td>77<br /> </td> </tr> <tr> <td>9<br /> </td> <td>27<br /> </td> <td>45<br /> </td> <td>63<br /> </td> <td>81<br /> </td> <td>99<br /> </td> </tr> <tr> <td>11<br /> </td> <td>33<br /> </td> <td>55<br /> </td> <td>77<br /> </td> <td>99<br /> </td> <td>121<br /> </td> </tr> </table> <br /> These mathematically related overtones are heard as tonal relationships when they are transposed and sounded above a fundamental tone. In this process of transposition from their position in the natural overtone series, these tones fall (unequally) in the span of one octave in the following order:<br /> <br /> 1, 33, 35, 9, 77, 5, 81, 21, [11,] 45, 3, 49, 99, 25, 27, 55, 7, 15, 121, 63, (2)<br /> <br /> These tones are performed in "just intonation' based on a fundamental tone of "F". <br /> <table class="wiki_table"> <tr> <td>Note<br /> </td> <td>Freq.<br /> </td> <td>Partial<br /> </td> <td>Cents<br /> </td> </tr> <tr> <td>F<br /> </td> <td>349.2<br /> </td> <td>1<br /> </td> <td>0<br /> </td> </tr> <tr> <td>F#<br /> </td> <td>360.11<br /> </td> <td>33<br /> </td> <td>-47<br /> </td> </tr> <tr> <td>G<br /> </td> <td>381.93<br /> </td> <td>35<br /> </td> <td>-45<br /> </td> </tr> <tr> <td>G#<br /> </td> <td>392.85<br /> </td> <td>9<br /> </td> <td>+4<br /> </td> </tr> <tr> <td>G#<br /> </td> <td>420.13<br /> </td> <td>77<br /> </td> <td>+20<br /> </td> </tr> <tr> <td>A<br /> </td> <td>436.5<br /> </td> <td>5<br /> </td> <td>-14<br /> </td> </tr> <tr> <td>A<br /> </td> <td>441.95<br /> </td> <td>81<br /> </td> <td>+8<br /> </td> </tr> <tr> <td>A#<br /> </td> <td>458.32<br /> </td> <td>21<br /> </td> <td>-29<br /> </td> </tr> <tr> <td>B<br /> </td> <td>480.15<br /> </td> <td>11<br /> </td> <td>-49<br /> </td> </tr> <tr> <td>B<br /> </td> <td>491.06<br /> </td> <td>45<br /> </td> <td>-10<br /> </td> </tr> <tr> <td>C<br /> </td> <td>523.8<br /> </td> <td>3<br /> </td> <td>+2<br /> </td> </tr> <tr> <td>C<br /> </td> <td>534.71<br /> </td> <td>49<br /> </td> <td>+38<br /> </td> </tr> <tr> <td>C#<br /> </td> <td>540.16<br /> </td> <td>99<br /> </td> <td>-45<br /> </td> </tr> <tr> <td>C#<br /> </td> <td>545.62<br /> </td> <td>25<br /> </td> <td>-28<br /> </td> </tr> <tr> <td>D<br /> </td> <td>589.27<br /> </td> <td>27<br /> </td> <td>+6<br /> </td> </tr> <tr> <td>D<br /> </td> <td>600.18<br /> </td> <td>55<br /> </td> <td>+37<br /> </td> </tr> <tr> <td>D#<br /> </td> <td>611.1<br /> </td> <td>7<br /> </td> <td>-31<br /> </td> </tr> <tr> <td>E<br /> </td> <td>654.75<br /> </td> <td>15<br /> </td> <td>-12<br /> </td> </tr> <tr> <td>E<br /> </td> <td>660.20<br /> </td> <td>121<br /> </td> <td>+2<br /> </td> </tr> <tr> <td>F<br /> </td> <td>687.48<br /> </td> <td>63<br /> </td> <td>-27<br /> </td> </tr> </table> </body></html>