8L 5s

Revision as of 15:18, 28 November 2014 by Wikispaces>JosephRuhf (**Imported revision 533042458 - Original comment: **)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2014-11-28 15:18:42 UTC.
The original revision id was 533042458.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

This MOS is the chromatic scale of Semidim, Tridec, Ammonite and Petrtri temperaments. It represents tempered chains of the 13:10 or 17:13 superthird, thus rendering 10:13:17 as an equidistant triad and tempering out 170:169. Also, the ratio between the generator of this MOS and its inverse is close to phi, or even phi itself.
||   ||   || cents || 2g ||
|| 3/8 ||   || 450 || 900 ||
|| 17/45 ||   || 453 1/3 || 906 2/3 ||
||   || 31/82 || 453 21/41 || 907 1/41 ||
|| 14/37 ||   || 454 2/37 || 908 4/37 ||
||   || 25/66 || 454 6/11 || 909 1/11 ||
|| 11/29 ||   || 455 5/29 || 910 10/29 ||
||   || 30/79 || 455 55/79 || 911 31/79 ||
||   || 19/50 || 456 || 912 ||
||   || 27/71 || 456 24/71 || 912 48/71 ||
||   || 35/92 || 456 12/23 || 913 1/23 ||
|| 8/21 ||   || 457 1/7 || 914 2/7 ||
||   || 29/76 || 457 13/19 || 915 7/19 ||
||   || 21/55 || 458 2/11 || 916 4/11 ||
|| 13/34 ||   || 458 14/17 || 917 11/17 ||
||   || 31/81 || 459 7/27 || 918 14/27 ||
|| 18/47 ||   || 459 27/47 || 919 7/47 ||
|| 23/60 ||   || 460 || 920 ||
|| 5/13 ||   || 461 7/13 || 923 1/13 ||

Original HTML content:

<html><head><title>8L 5s</title></head><body>This MOS is the chromatic scale of Semidim, Tridec, Ammonite and Petrtri temperaments. It represents tempered chains of the 13:10 or 17:13 superthird, thus rendering 10:13:17 as an equidistant triad and tempering out 170:169. Also, the ratio between the generator of this MOS and its inverse is close to phi, or even phi itself.<br />


<table class="wiki_table">
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>cents<br />
</td>
        <td>2g<br />
</td>
    </tr>
    <tr>
        <td>3/8<br />
</td>
        <td><br />
</td>
        <td>450<br />
</td>
        <td>900<br />
</td>
    </tr>
    <tr>
        <td>17/45<br />
</td>
        <td><br />
</td>
        <td>453 1/3<br />
</td>
        <td>906 2/3<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>31/82<br />
</td>
        <td>453 21/41<br />
</td>
        <td>907 1/41<br />
</td>
    </tr>
    <tr>
        <td>14/37<br />
</td>
        <td><br />
</td>
        <td>454 2/37<br />
</td>
        <td>908 4/37<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>25/66<br />
</td>
        <td>454 6/11<br />
</td>
        <td>909 1/11<br />
</td>
    </tr>
    <tr>
        <td>11/29<br />
</td>
        <td><br />
</td>
        <td>455 5/29<br />
</td>
        <td>910 10/29<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>30/79<br />
</td>
        <td>455 55/79<br />
</td>
        <td>911 31/79<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>19/50<br />
</td>
        <td>456<br />
</td>
        <td>912<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>27/71<br />
</td>
        <td>456 24/71<br />
</td>
        <td>912 48/71<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>35/92<br />
</td>
        <td>456 12/23<br />
</td>
        <td>913 1/23<br />
</td>
    </tr>
    <tr>
        <td>8/21<br />
</td>
        <td><br />
</td>
        <td>457 1/7<br />
</td>
        <td>914 2/7<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>29/76<br />
</td>
        <td>457 13/19<br />
</td>
        <td>915 7/19<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>21/55<br />
</td>
        <td>458 2/11<br />
</td>
        <td>916 4/11<br />
</td>
    </tr>
    <tr>
        <td>13/34<br />
</td>
        <td><br />
</td>
        <td>458 14/17<br />
</td>
        <td>917 11/17<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>31/81<br />
</td>
        <td>459 7/27<br />
</td>
        <td>918 14/27<br />
</td>
    </tr>
    <tr>
        <td>18/47<br />
</td>
        <td><br />
</td>
        <td>459 27/47<br />
</td>
        <td>919 7/47<br />
</td>
    </tr>
    <tr>
        <td>23/60<br />
</td>
        <td><br />
</td>
        <td>460<br />
</td>
        <td>920<br />
</td>
    </tr>
    <tr>
        <td>5/13<br />
</td>
        <td><br />
</td>
        <td>461 7/13<br />
</td>
        <td>923 1/13<br />
</td>
    </tr>
</table>

</body></html>