5L 3s
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author guest and made on 2011-08-28 03:12:36 UTC.
- The original revision id was 248869459.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of [[5edo]] = 480¢) to 3\8 (three degrees of [[8edo]] = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this: || || || || || || || || || || ||= scale || g in cents || 2g || 3g || 4g || Comments || || 2\5 || || || || || || || || || ||= 1 0 1 1 0 1 0 1 || 480.000 || 960.000 || 240.000 || 720.000 || || || || || || || || || || || || 21\53 ||= 10 1 10 10 1 10 1 10 || 475.472 || 950.943 || 226.415 || 701.887 || Vulture/Buzzard is around here || || || || || || || || || || 19\48 || ||= 9 1 9 9 1 9 1 9 || 475 || || || || || || || || || || || || || 17\43 || || ||= 8 1 8 8 1 8 1 8 || 474.419 || || || || || || || || || || || || 15\38 || || || ||= 7 1 7 7 1 7 1 7 || 473.684 || || || || || || || || || || || 13\33 || || || || ||= 6 1 6 6 1 6 1 6 || 472.727 || || || || || || || || || || 11\28 || || || || || ||= 5 1 5 5 1 5 1 5 || 471.429 || || || || || || || || || 9\23 || || || || || || ||= 4 1 4 4 1 4 1 4 || 469.565 || 939.130 || 208.696 || 678.261 || || || || || 7\18 || || || || || || || ||= 3 1 3 3 1 3 1 3 || 466.667 || 933.333 || 200.000 || 666.667 || || || || || || 12\31 || || || || || || ||= 5 2 5 5 2 5 2 5 || 464.516 || 929.032 || 193.549 || 658.065 || || || || 5\13 || || || || || || || || ||= 2 1 2 2 1 2 1 2 || 461.538 || 923.077 || 184.615 || 646.154 || || || || || || 13\34 || || || || || || ||= 5 3 5 5 3 5 3 5 || 458.824 || 917.647 || 176.471 || 635.294 || || || || || || || || 34\89 || || || || ||= 13 8 13 13 8 13 8 13 || 458.427 || || || || Golden father || || || || || || 21\55 || || || || || ||= 8 5 8 8 5 8 5 8 || 458.182 || || || || || || || || 8\21 || || || || || || || ||= 3 2 3 3 2 3 2 3 || 457.143 || 914.286 || 171.429 || 628.571 || || || || || || 11\29 || || || || || || ||= 4 3 4 4 3 4 3 4 || 455.172 || 910.345 || 165.517 || 620.690 || || || 3\8 || || || || || || || || || ||= 1 1 1 1 1 1 1 1 || 450.000 || 900.000 || 150.000 || 600.000 || || The only notable harmonic entropy minimum is Vulture/[[Hemifamity temperaments|Buzzard]], in which four generators make a 3/1 (and three generators approximate an octave plus 8/7). The rest of this region is a kind of wasteland in terms of harmonious MOSes.
Original HTML content:
<html><head><title>5L 3s</title></head><body>5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of <a class="wiki_link" href="/5edo">5edo</a> = 480¢) to 3\8 (three degrees of <a class="wiki_link" href="/8edo">8edo</a> = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this:<br /> <table class="wiki_table"> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">scale<br /> </td> <td>g in cents<br /> </td> <td>2g<br /> </td> <td>3g<br /> </td> <td>4g<br /> </td> <td>Comments<br /> </td> </tr> <tr> <td>2\5<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">1 0 1 1 0 1 0 1<br /> </td> <td>480.000<br /> </td> <td>960.000<br /> </td> <td>240.000<br /> </td> <td>720.000<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>21\53<br /> </td> <td style="text-align: center;">10 1 10 10 1 10 1 10<br /> </td> <td>475.472<br /> </td> <td>950.943<br /> </td> <td>226.415<br /> </td> <td>701.887<br /> </td> <td>Vulture/Buzzard is around here<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>19\48<br /> </td> <td><br /> </td> <td style="text-align: center;">9 1 9 9 1 9 1 9<br /> </td> <td>475<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>17\43<br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">8 1 8 8 1 8 1 8<br /> </td> <td>474.419<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>15\38<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">7 1 7 7 1 7 1 7<br /> </td> <td>473.684<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>13\33<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">6 1 6 6 1 6 1 6<br /> </td> <td>472.727<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>11\28<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">5 1 5 5 1 5 1 5<br /> </td> <td>471.429<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>9\23<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">4 1 4 4 1 4 1 4<br /> </td> <td>469.565<br /> </td> <td>939.130<br /> </td> <td>208.696<br /> </td> <td>678.261<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>7\18<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">3 1 3 3 1 3 1 3<br /> </td> <td>466.667<br /> </td> <td>933.333<br /> </td> <td>200.000<br /> </td> <td>666.667<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>12\31<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">5 2 5 5 2 5 2 5<br /> </td> <td>464.516<br /> </td> <td>929.032<br /> </td> <td>193.549<br /> </td> <td>658.065<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td>5\13<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">2 1 2 2 1 2 1 2<br /> </td> <td>461.538<br /> </td> <td>923.077<br /> </td> <td>184.615<br /> </td> <td>646.154<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>13\34<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">5 3 5 5 3 5 3 5<br /> </td> <td>458.824<br /> </td> <td>917.647<br /> </td> <td>176.471<br /> </td> <td>635.294<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>34\89<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">13 8 13 13 8 13 8 13<br /> </td> <td>458.427<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>Golden father<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>21\55<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">8 5 8 8 5 8 5 8<br /> </td> <td>458.182<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>8\21<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">3 2 3 3 2 3 2 3<br /> </td> <td>457.143<br /> </td> <td>914.286<br /> </td> <td>171.429<br /> </td> <td>628.571<br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>11\29<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">4 3 4 4 3 4 3 4<br /> </td> <td>455.172<br /> </td> <td>910.345<br /> </td> <td>165.517<br /> </td> <td>620.690<br /> </td> <td><br /> </td> </tr> <tr> <td>3\8<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td style="text-align: center;">1 1 1 1 1 1 1 1<br /> </td> <td>450.000<br /> </td> <td>900.000<br /> </td> <td>150.000<br /> </td> <td>600.000<br /> </td> <td><br /> </td> </tr> </table> The only notable harmonic entropy minimum is Vulture/<a class="wiki_link" href="/Hemifamity%20temperaments">Buzzard</a>, in which four generators make a 3/1 (and three generators approximate an octave plus 8/7). The rest of this region is a kind of wasteland in terms of harmonious MOSes.</body></html>