55edo
55 tone equal temperament
55edo divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments.
5-limit commas: 81/80, <31 1 -14|
7-limit commas: 81/80, 686/675, 6144/6125
11-limit commas: 81/80, 121/120, 176/175, 686/675
Intervals
Degrees of 55-EDO | Cents value |
0 | 0 |
1 | 21.818 |
2 | 43.636 |
3 | 65.455 |
4 | 87.273 |
5 | 109.091 |
6 | 130.909 |
7 | 152.727 |
8 | 174.545 |
9 | 196.364 |
10 | 218.182 |
11 | 240.000 |
12 | 261.818 |
13 | 283.636 |
14 | 305.455 |
15 | 327.273 |
16 | 349.091 |
17 | 370.909 |
18 | 392.727 |
19 | 414.545 |
20 | 436.364 |
21 | 458.182 |
22 | 480.000 |
23 | 501.818 |
24 | 523.636 |
25 | 545.455 |
26 | 567.273 |
27 | 589.091 |
28 | 610.909 |
29 | 632.727 |
30 | 654.545 |
31 | 676.364 |
32 | 698.182 |
33 | 720.000 |
34 | 741.818 |
35 | 763.636 |
36 | 785.455 |
37 | 807.273 |
38 | 829.091 |
39 | 850.909 |
40 | 872.727 |
41 | 894.545 |
42 | 916.364 |
43 | 938.182 |
44 | 960.000 |
45 | 981.818 |
46 | 1003.636 |
47 | 1025.455 |
48 | 1047.273 |
49 | 1069.091 |
50 | 1090.909 |
51 | 1112.727 |
52 | 1134.545 |
53 | 1156.364 |
54 | 1178.182 |
55 | 1200.000 |
Mozart - Adagio in B minor KV 540 by Carlo Serafini (blog entry)
"Mozart's tuning: 55edo" (containing another listening example) in the tonalsoft encyclopedia