253edo

Revision as of 00:48, 9 May 2011 by Wikispaces>Osmiorisbendi (**Imported revision 226634192 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2011-05-09 00:48:27 UTC.
The original revision id was 226634192.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #630080; font-size: 113%;">253 tone equal temperament</span>= 

253edo divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by **148\253**, which is 701.976285 Cents, a **0.004487 Cents sharp**. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic family|sesquiquartififths]] temperament.

__**253 tone equal modes**__

43 43 19 43 43 43 19: MOS of 5L 2s ([[Superpythagorean]] Tuning)
41 41 24 41 41 41 24: Meantonic Tuning [[MOS]]
35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect [[Porcupine-8]] Tuning (Octamonatonic Scale))
33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning)
31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS
26 26 15 26 26 26 15 26 26 26 15: Sensi-11 (or Undecimal Triatonic)

Original HTML content:

<html><head><title>253edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x253 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #630080; font-size: 113%;">253 tone equal temperament</span></h1>
 <br />
253edo divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by <strong>148\253</strong>, which is 701.976285 Cents, a <strong>0.004487 Cents sharp</strong>. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit <a class="wiki_link" href="/Schismatic%20family">sesquiquartififths</a> temperament.<br />
<br />
<u><strong>253 tone equal modes</strong></u><br />
<br />
43 43 19 43 43 43 19: MOS of 5L 2s (<a class="wiki_link" href="/Superpythagorean">Superpythagorean</a> Tuning)<br />
41 41 24 41 41 41 24: Meantonic Tuning <a class="wiki_link" href="/MOS">MOS</a><br />
35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect <a class="wiki_link" href="/Porcupine-8">Porcupine-8</a> Tuning (Octamonatonic Scale))<br />
33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning)<br />
31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS<br />
26 26 15 26 26 26 15 26 26 26 15: Sensi-11 (or Undecimal Triatonic)</body></html>