[math]\displaystyle{
\def\vsp{{}\mkern-4.5mu}{}
\def\hs{\hspace{-3px}}
\def\val#1{\left\langle\begin{matrix}#1\end{matrix}\right]}
\def\tval#1{\left\langle\begin{matrix}#1\end{matrix}\right\vert}
\def\bival#1{\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right]\right]}
\def\bitval#1{\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right\vert\right\vert}
\def\trival#1{\left\langle\vsp\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right]\right]\right]}
\def\tritval#1{\left\langle\vsp\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right\vert\right\vert\right\vert}
\def\quadval#1{\left\langle\vsp\left\langle\vsp\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right]\right]\right]\right]}
\def\quadtval#1{\left\langle\vsp\left\langle\vsp\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right\vert\right\vert\right\vert\right\vert}
\def\monzo#1{\left[\begin{matrix}#1\end{matrix}\right\rangle\vsp}
\def\tmonzo#1{\left\vert\begin{matrix}#1\end{matrix}\right\rangle\vsp}
\def\bimonzo#1{\left[\left[\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp}
\def\bitmonzo#1{\left\vert\left\vert\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp}
\def\trimonzo#1{\left[\left[\left[\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp}
\def\tritmonzo#1{\left\vert\left\vert\left\vert\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp}
\def\quadmonzo#1{\left[\left[\left[\left[\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp}
\def\quadtmonzo#1{\left\vert\left\vert\left\vert\left\vert\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp}
\def\rket#1{\left[{#1}\right\}}
\def\vmp#1#2{\left\langle\begin{matrix}#1\end{matrix}\,\vert\,\begin{matrix}#2\end{matrix}\right\rangle\vsp}
\def\wmp#1#2{\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\,\vert\vert\,\begin{matrix}#2\end{matrix}\right\rangle\vsp\right\rangle\vsp}
}[/math]
This template allows LaTeX representations of monzos, vals, and monzo–val products by defining the operators in advance to avoid the need to manually enter brackets.
Note: You can use {{texmap}}
as a shortcut.
[math]\displaystyle{
\def\vsp{{}\mkern-4.5mu}{}
\def\hs{\hspace{-3px}}
\def\val#1{\left\langle\begin{matrix}#1\end{matrix}\right]}
\def\tval#1{\left\langle\begin{matrix}#1\end{matrix}\right\vert}
\def\bival#1{\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right]\right]}
\def\bitval#1{\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right\vert\right\vert}
\def\trival#1{\left\langle\vsp\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right]\right]\right]}
\def\tritval#1{\left\langle\vsp\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right\vert\right\vert\right\vert}
\def\quadval#1{\left\langle\vsp\left\langle\vsp\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right]\right]\right]\right]}
\def\quadtval#1{\left\langle\vsp\left\langle\vsp\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\right\vert\right\vert\right\vert\right\vert}
\def\monzo#1{\left[\begin{matrix}#1\end{matrix}\right\rangle\vsp}
\def\tmonzo#1{\left\vert\begin{matrix}#1\end{matrix}\right\rangle\vsp}
\def\bimonzo#1{\left[\left[\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp}
\def\bitmonzo#1{\left\vert\left\vert\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp}
\def\trimonzo#1{\left[\left[\left[\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp}
\def\tritmonzo#1{\left\vert\left\vert\left\vert\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp}
\def\quadmonzo#1{\left[\left[\left[\left[\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp}
\def\quadtmonzo#1{\left\vert\left\vert\left\vert\left\vert\begin{matrix}#1\end{matrix}\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp\right\rangle\vsp}
\def\rket#1{\left[{#1}\right\}}
\def\vmp#1#2{\left\langle\begin{matrix}#1\end{matrix}\,\vert\,\begin{matrix}#2\end{matrix}\right\rangle\vsp}
\def\wmp#1#2{\left\langle\vsp\left\langle\begin{matrix}#1\end{matrix}\,\vert\vert\,\begin{matrix}#2\end{matrix}\right\rangle\vsp\right\rangle\vsp}
}[/math]
This template allows LaTeX representations of monzos, vals, and monzo–val products by defining the operators in advance to avoid the need to manually enter brackets.
Usage
This template is mainly used to typeset Monzos and vals, but multimonzos and multivals are also supported up to four dimensions.
Note: You can use {{texmap}}
as a shortcut.
Pre-defined LaTeX control sequences for interval vectors
Operator
|
Example
|
Definition
|
You type
|
You get
|
monzo
|
\monzo{-4 & 4 & -1}
|
[math]\displaystyle{ \monzo{-4 & 4 & -1} }[/math]
|
Monzo
|
tmonzo
|
\tmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \tmonzo{-4 & 4 & -1} }[/math]
|
Monzo (pipe variant)
|
bimonzo
|
\bimonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \bimonzo{-4 & 4 & -1} }[/math]
|
Bimonzo
|
bitmonzo
|
\bitmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \bitmonzo{-4 & 4 & -1} }[/math]
|
Bimonzo (pipe variant)
|
trimonzo
|
\trimonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \trimonzo{-4 & 4 & -1} }[/math]
|
Trimonzo
|
tritmonzo
|
\tritmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \tritmonzo{-4 & 4 & -1} }[/math]
|
Trimonzo (pipe variant)
|
quadmonzo
|
\quadmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \quadmonzo{-4 & 4 & -1} }[/math]
|
Quadmonzo
|
quadtmonzo
|
\quadtmonzo{-4 & 4 & -1}
|
[math]\displaystyle{ \quadtmonzo{-4 & 4 & -1} }[/math]
|
Quadmonzo (pipe variant)
|
val
|
\val{12 & 19 & 28}
|
[math]\displaystyle{ \val{12 & 19 & 28} }[/math]
|
Val
|
tval
|
\tval{12 & 19 & 28}
|
[math]\displaystyle{ \tval{12 & 19 & 28} }[/math]
|
Val (pipe variant)
|
bival
|
\bival{12 & 19 & 28}
|
[math]\displaystyle{ \bival{12 & 19 & 28} }[/math]
|
Bival
|
bitval
|
\bitval{12 & 19 & 28}
|
[math]\displaystyle{ \bitval{12 & 19 & 28} }[/math]
|
Bival (pipe variant)
|
trival
|
\trival{12 & 19 & 28}
|
[math]\displaystyle{ \trival{12 & 19 & 28} }[/math]
|
Trival
|
tritval
|
\tritval{12 & 19 & 28}
|
[math]\displaystyle{ \tritval{12 & 19 & 28} }[/math]
|
Trival (pipe variant)
|
quadval
|
\quadval{12 & 19 & 28}
|
[math]\displaystyle{ \quadval{12 & 19 & 28} }[/math]
|
Quadval
|
quadtval
|
\quadtval{12 & 19 & 28}
|
[math]\displaystyle{ \quadtval{12 & 19 & 28} }[/math]
|
Quadval (pipe variant)
|
rbra
|
\rbra{\monzo{1 & 2 & 3} & \monzo{0 & -3 & -5}}
|
[math]\displaystyle{ \rbra{\monzo{1 & 2 & 3} & \monzo{0 & -3 & -5}} }[/math]
|
Dave Keenan and Douglas Blumeyer's variation on extended bra-ket notation
|
rket
|
\rket{\val{1 & 2 & 3} & \val{0 & -3 & -5}}
|
[math]\displaystyle{ \rket{\val{1 & 2 & 3} & \val{0 & -3 & -5}} }[/math]
|
vmp
|
\vmp{12 & 19 & 28}{-4 & 4 & -1}
|
[math]\displaystyle{ \vmp{12 & 19 & 28}{-4 & 4 & -1} }[/math]
|
Dot product of val and monzo
|
wmp
|
\wmp{12 & 19 & 28}{-4 & 4 & -1}
|
[math]\displaystyle{ \wmp{12 & 19 & 28}{-4 & 4 & -1} }[/math]
|
Dot product of bival and bimonzo
|
See also