Chords of hemiwürschmidt
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-12-21 22:44:20 UTC.
- The original revision id was 288069724.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Würschmidt+family#Hemiwürschmidt|hemiwürschmidt temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 540/539 are swetismic, by 441/440 werckismic, and by 243/242 rastmic. Chords requiring any two of the above are labeled jove. Hemiwürschmidt has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 40, and so would require the 68 note MOS. However, it will be observed that much smaller MOS still have quite a few chords. =Triads= || Number || Chord || Transversal || Type || ||1 || 0-2-5 || 1-5/4-7/4 || otonal || ||2 || 0-3-5 || 1-7/5-7/4 || utonal || ||3 || 0-3-8 || 1-7/5-11/9 || werckismic || ||4 || 0-5-8 || 1-7/4-11/9 || werckismic || ||5 || 0-3-11 || 1-7/5-12/7 || swetismic || ||6 || 0-8-11 || 1-11/9-12/7 || swetismic || ||7 || 0-3-14 || 1-7/5-6/5 || otonal || ||8 || 0-11-14 || 1-12/7-6/5 || utonal || ||9 || 0-2-16 || 1-5/4-3/2 || otonal || ||10 || 0-5-16 || 1-7/4-3/2 || otonal || ||11 || 0-8-16 || 1-11/9-3/2 || rastmic || ||12 || 0-11-16 || 1-12/7-3/2 || utonal || ||13 || 0-14-16 || 1-6/5-3/2 || utonal || ||14 || 0-8-24 || 1-11/9-11/6 || utonal || ||15 || 0-16-24 || 1-3/2-11/6 || otonal || ||16 || 0-3-27 || 1-7/5-9/7 || swetismic || ||17 || 0-11-27 || 1-12/7-9/7 || otonal || ||18 || 0-16-27 || 1-3/2-9/7 || utonal || ||19 || 0-24-27 || 1-11/6-9/7 || swetismic || ||20 || 0-3-30 || 1-7/5-9/5 || otonal || ||21 || 0-14-30 || 1-6/5-9/5 || otonal || ||22 || 0-16-30 || 1-3/2-9/5 || utonal || ||23 || 0-27-30 || 1-9/7-9/5 || utonal || ||24 || 0-2-32 || 1-5/4-9/8 || otonal || ||25 || 0-5-32 || 1-7/4-9/8 || otonal || ||26 || 0-8-32 || 1-11/9-9/8 || rastmic || ||27 || 0-16-32 || 1-3/2-9/8 || ambitonal || ||28 || 0-24-32 || 1-11/6-9/8 || rastmic || ||29 || 0-27-32 || 1-9/7-9/8 || utonal || ||30 || 0-30-32 || 1-9/5-9/8 || utonal || ||31 || 0-3-35 || 1-7/5-11/7 || werckismic || ||32 || 0-5-35 || 1-7/4-11/7 || werckismic || ||33 || 0-8-35 || 1-11/9-11/7 || utonal || ||34 || 0-11-35 || 1-12/7-11/7 || otonal || ||35 || 0-24-35 || 1-11/6-11/7 || utonal || ||36 || 0-27-35 || 1-9/7-11/7 || otonal || ||37 || 0-30-35 || 1-9/5-11/7 || werckismic || ||38 || 0-32-35 || 1-9/8-11/7 || werckismic || ||39 || 0-3-38 || 1-7/5-11/10 || otonal || ||40 || 0-8-38 || 1-11/9-11/10 || utonal || ||41 || 0-11-38 || 1-12/7-11/10 || swetismic || ||42 || 0-14-38 || 1-6/5-11/10 || otonal || ||43 || 0-24-38 || 1-11/6-11/10 || utonal || ||44 || 0-27-38 || 1-9/7-11/10 || swetismic || ||45 || 0-30-38 || 1-9/5-11/10 || otonal || ||46 || 0-35-38 || 1-11/7-11/10 || utonal || ||47 || 0-2-40 || 1-5/4-11/8 || otonal || ||48 || 0-5-40 || 1-7/4-11/8 || otonal || ||49 || 0-8-40 || 1-11/9-11/8 || utonal || ||50 || 0-16-40 || 1-3/2-11/8 || otonal || ||51 || 0-24-40 || 1-11/6-11/8 || utonal || ||52 || 0-32-40 || 1-9/8-11/8 || otonal || ||53 || 0-35-40 || 1-11/7-11/8 || utonal || ||54 || 0-38-40 || 1-11/10-11/8 || utonal || =Tetrads= || Number || Chord || Transversal || Type || || 1 || 0-3-5-8 || 1-7/5-7/4-11/9 || werckismic || || 2 || 0-3-8-11 || 1-7/5-11/9-12/7 || jove || || 3 || 0-3-11-14 || 1-7/5-12/7-6/5 || swetismic || || 4 || 0-2-5-16 || 1-5/4-7/4-3/2 || otonal || || 5 || 0-5-8-16 || 1-7/4-11/9-3/2 || jove || || 6 || 0-8-11-16 || 1-11/9-12/7-3/2 || jove || || 7 || 0-11-14-16 || 1-12/7-6/5-3/2 || utonal || || 8 || 0-8-16-24 || 1-11/9-3/2-11/6 || rastmic || || 9 || 0-3-11-27 || 1-7/5-12/7-9/7 || swetismic || || 10 || 0-11-16-27 || 1-12/7-3/2-9/7 || ambitonal || || 11 || 0-16-24-27 || 1-3/2-11/6-9/7 || swetismic || || 12 || 0-3-14-30 || 1-7/5-6/5-9/5 || otonal || || 13 || 0-14-16-30 || 1-6/5-3/2-9/5 || ambitonal || || 14 || 0-3-27-30 || 1-7/5-9/7-9/5 || swetismic || || 15 || 0-16-27-30 || 1-3/2-9/7-9/5 || utonal || || 16 || 0-2-5-32 || 1-5/4-7/4-9/8 || otonal || || 17 || 0-5-8-32 || 1-7/4-11/9-9/8 || jove || || 18 || 0-2-16-32 || 1-5/4-3/2-9/8 || otonal || || 19 || 0-5-16-32 || 1-7/4-3/2-9/8 || otonal || || 20 || 0-8-16-32 || 1-11/9-3/2-9/8 || rastmic || || 21 || 0-8-24-32 || 1-11/9-11/6-9/8 || rastmic || || 22 || 0-16-24-32 || 1-3/2-11/6-9/8 || rastmic || || 23 || 0-16-27-32 || 1-3/2-9/7-9/8 || utonal || || 24 || 0-24-27-32 || 1-11/6-9/7-9/8 || jove || || 25 || 0-16-30-32 || 1-3/2-9/5-9/8 || utonal || || 26 || 0-27-30-32 || 1-9/7-9/5-9/8 || utonal || || 27 || 0-3-5-35 || 1-7/5-7/4-11/7 || werckismic || || 28 || 0-3-8-35 || 1-7/5-11/9-11/7 || werckismic || || 29 || 0-5-8-35 || 1-7/4-11/9-11/7 || werckismic || || 30 || 0-3-11-35 || 1-7/5-12/7-11/7 || jove || || 31 || 0-8-11-35 || 1-11/9-12/7-11/7 || swetismic || || 32 || 0-8-24-35 || 1-11/9-11/6-11/7 || utonal || || 33 || 0-3-27-35 || 1-7/5-9/7-11/7 || jove || || 34 || 0-11-27-35 || 1-12/7-9/7-11/7 || otonal || || 35 || 0-24-27-35 || 1-11/6-9/7-11/7 || swetismic || || 36 || 0-3-30-35 || 1-7/5-9/5-11/7 || werckismic || || 37 || 0-27-30-35 || 1-9/7-9/5-11/7 || werckismic || || 38 || 0-5-32-35 || 1-7/4-9/8-11/7 || werckismic || || 39 || 0-8-32-35 || 1-11/9-9/8-11/7 || jove || || 40 || 0-24-32-35 || 1-11/6-9/8-11/7 || jove || || 41 || 0-27-32-35 || 1-9/7-9/8-11/7 || werckismic || || 42 || 0-30-32-35 || 1-9/5-9/8-11/7 || werckismic || || 43 || 0-3-8-38 || 1-7/5-11/9-11/10 || werckismic || || 44 || 0-3-11-38 || 1-7/5-12/7-11/10 || swetismic || || 45 || 0-8-11-38 || 1-11/9-12/7-11/10 || swetismic || || 46 || 0-3-14-38 || 1-7/5-6/5-11/10 || otonal || || 47 || 0-11-14-38 || 1-12/7-6/5-11/10 || swetismic || || 48 || 0-8-24-38 || 1-11/9-11/6-11/10 || utonal || || 49 || 0-3-27-38 || 1-7/5-9/7-11/10 || swetismic || || 50 || 0-11-27-38 || 1-12/7-9/7-11/10 || swetismic || || 51 || 0-24-27-38 || 1-11/6-9/7-11/10 || swetismic || || 52 || 0-3-30-38 || 1-7/5-9/5-11/10 || otonal || || 53 || 0-14-30-38 || 1-6/5-9/5-11/10 || otonal || || 54 || 0-27-30-38 || 1-9/7-9/5-11/10 || swetismic || || 55 || 0-3-35-38 || 1-7/5-11/7-11/10 || werckismic || || 56 || 0-8-35-38 || 1-11/9-11/7-11/10 || utonal || || 57 || 0-11-35-38 || 1-12/7-11/7-11/10 || swetismic || || 58 || 0-24-35-38 || 1-11/6-11/7-11/10 || utonal || || 59 || 0-27-35-38 || 1-9/7-11/7-11/10 || swetismic || || 60 || 0-30-35-38 || 1-9/5-11/7-11/10 || werckismic || || 61 || 0-2-5-40 || 1-5/4-7/4-11/8 || otonal || || 62 || 0-5-8-40 || 1-7/4-11/9-11/8 || werckismic || || 63 || 0-2-16-40 || 1-5/4-3/2-11/8 || otonal || || 64 || 0-5-16-40 || 1-7/4-3/2-11/8 || otonal || || 65 || 0-8-16-40 || 1-11/9-3/2-11/8 || rastmic || || 66 || 0-8-24-40 || 1-11/9-11/6-11/8 || utonal || || 67 || 0-16-24-40 || 1-3/2-11/6-11/8 || ambitonal || || 68 || 0-2-32-40 || 1-5/4-9/8-11/8 || otonal || || 69 || 0-5-32-40 || 1-7/4-9/8-11/8 || otonal || || 70 || 0-8-32-40 || 1-11/9-9/8-11/8 || rastmic || || 71 || 0-16-32-40 || 1-3/2-9/8-11/8 || otonal || || 72 || 0-24-32-40 || 1-11/6-9/8-11/8 || rastmic || || 73 || 0-5-35-40 || 1-7/4-11/7-11/8 || werckismic || || 74 || 0-8-35-40 || 1-11/9-11/7-11/8 || utonal || || 75 || 0-24-35-40 || 1-11/6-11/7-11/8 || utonal || || 76 || 0-32-35-40 || 1-9/8-11/7-11/8 || werckismic || || 77 || 0-8-38-40 || 1-11/9-11/10-11/8 || utonal || || 78 || 0-24-38-40 || 1-11/6-11/10-11/8 || utonal || || 79 || 0-35-38-40 || 1-11/7-11/10-11/8 || utonal || =Pentads= || Number || Chord || Transversal || Type || || 1 || 0-2-5-16-32 || 1-5/4-7/4-3/2-9/8 || otonal || || 2 || 0-5-8-16-32 || 1-7/4-11/9-3/2-9/8 || jove || || 3 || 0-8-16-24-32 || 1-11/9-3/2-11/6-9/8 || rastmic || || 4 || 0-16-24-27-32 || 1-3/2-11/6-9/7-9/8 || jove || || 5 || 0-16-27-30-32 || 1-3/2-9/7-9/5-9/8 || utonal || || 6 || 0-3-5-8-35 || 1-7/5-7/4-11/9-11/7 || werckismic || || 7 || 0-3-8-11-35 || 1-7/5-11/9-12/7-11/7 || jove || || 8 || 0-3-11-27-35 || 1-7/5-12/7-9/7-11/7 || jove || || 9 || 0-3-27-30-35 || 1-7/5-9/7-9/5-11/7 || jove || || 10 || 0-5-8-32-35 || 1-7/4-11/9-9/8-11/7 || jove || || 11 || 0-8-24-32-35 || 1-11/9-11/6-9/8-11/7 || jove || || 12 || 0-24-27-32-35 || 1-11/6-9/7-9/8-11/7 || jove || || 13 || 0-27-30-32-35 || 1-9/7-9/5-9/8-11/7 || werckismic || || 14 || 0-3-8-11-38 || 1-7/5-11/9-12/7-11/10 || jove || || 15 || 0-3-11-14-38 || 1-7/5-12/7-6/5-11/10 || swetismic || || 16 || 0-3-11-27-38 || 1-7/5-12/7-9/7-11/10 || swetismic || || 17 || 0-3-14-30-38 || 1-7/5-6/5-9/5-11/10 || otonal || || 18 || 0-3-27-30-38 || 1-7/5-9/7-9/5-11/10 || swetismic || || 19 || 0-3-8-35-38 || 1-7/5-11/9-11/7-11/10 || werckismic || || 20 || 0-3-11-35-38 || 1-7/5-12/7-11/7-11/10 || jove || || 21 || 0-8-11-35-38 || 1-11/9-12/7-11/7-11/10 || swetismic || || 22 || 0-8-24-35-38 || 1-11/9-11/6-11/7-11/10 || utonal || || 23 || 0-3-27-35-38 || 1-7/5-9/7-11/7-11/10 || jove || || 24 || 0-11-27-35-38 || 1-12/7-9/7-11/7-11/10 || swetismic || || 25 || 0-24-27-35-38 || 1-11/6-9/7-11/7-11/10 || swetismic || || 26 || 0-3-30-35-38 || 1-7/5-9/5-11/7-11/10 || werckismic || || 27 || 0-27-30-35-38 || 1-9/7-9/5-11/7-11/10 || jove || || 28 || 0-2-5-16-40 || 1-5/4-7/4-3/2-11/8 || otonal || || 29 || 0-5-8-16-40 || 1-7/4-11/9-3/2-11/8 || jove || || 30 || 0-8-16-24-40 || 1-11/9-3/2-11/6-11/8 || rastmic || || 31 || 0-2-5-32-40 || 1-5/4-7/4-9/8-11/8 || otonal || || 32 || 0-5-8-32-40 || 1-7/4-11/9-9/8-11/8 || jove || || 33 || 0-2-16-32-40 || 1-5/4-3/2-9/8-11/8 || otonal || || 34 || 0-5-16-32-40 || 1-7/4-3/2-9/8-11/8 || otonal || || 35 || 0-8-16-32-40 || 1-11/9-3/2-9/8-11/8 || rastmic || || 36 || 0-8-24-32-40 || 1-11/9-11/6-9/8-11/8 || rastmic || || 37 || 0-16-24-32-40 || 1-3/2-11/6-9/8-11/8 || rastmic || || 38 || 0-5-8-35-40 || 1-7/4-11/9-11/7-11/8 || werckismic || || 39 || 0-8-24-35-40 || 1-11/9-11/6-11/7-11/8 || utonal || || 40 || 0-5-32-35-40 || 1-7/4-9/8-11/7-11/8 || werckismic || || 41 || 0-8-32-35-40 || 1-11/9-9/8-11/7-11/8 || jove || || 42 || 0-24-32-35-40 || 1-11/6-9/8-11/7-11/8 || jove || || 43 || 0-8-24-38-40 || 1-11/9-11/6-11/10-11/8 || utonal || || 44 || 0-8-35-38-40 || 1-11/9-11/7-11/10-11/8 || utonal || || 45 || 0-24-35-38-40 || 1-11/6-11/7-11/10-11/8 || utonal || =Hexads= || Number || Chord || Transversal || Type || || 1 || 0-3-8-11-35-38 || 1-7/5-11/9-12/7-11/7-11/10 || jove || || 2 || 0-3-11-27-35-38 || 1-7/5-12/7-9/7-11/7-11/10 || jove || || 3 || 0-3-27-30-35-38 || 1-7/5-9/7-9/5-11/7-11/10 || jove || || 4 || 0-2-5-16-32-40 || 1-5/4-7/4-3/2-9/8-11/8 || otonal || || 5 || 0-5-8-16-32-40 || 1-7/4-11/9-3/2-9/8-11/8 || jove || || 6 || 0-8-16-24-32-40 || 1-11/9-3/2-11/6-9/8-11/8 || rastmic || || 7 || 0-5-8-32-35-40 || 1-7/4-11/9-9/8-11/7-11/8 || jove || || 8 || 0-8-24-32-35-40 || 1-11/9-11/6-9/8-11/7-11/8 || jove || || 9 || 0-8-24-35-38-40 || 1-11/9-11/6-11/7-11/10-11/8 || utonal ||
Original HTML content:
<html><head><title>Chords of hemiwürschmidt</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit [[Würschmidt+family#Hemiwürschmidt|hemiwürschmidt temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 540/539 are swetismic, by 441/440 werckismic, and by 243/242 rastmic. Chords requiring any two of the above are labeled jove.<br /> <br /> Hemiwürschmidt has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 40, and so would require the 68 note MOS. However, it will be observed that much smaller MOS still have quite a few chords.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-2-5<br /> </td> <td>1-5/4-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-3-5<br /> </td> <td>1-7/5-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-3-8<br /> </td> <td>1-7/5-11/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-5-8<br /> </td> <td>1-7/4-11/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-3-11<br /> </td> <td>1-7/5-12/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-8-11<br /> </td> <td>1-11/9-12/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-3-14<br /> </td> <td>1-7/5-6/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-11-14<br /> </td> <td>1-12/7-6/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-2-16<br /> </td> <td>1-5/4-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-5-16<br /> </td> <td>1-7/4-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-8-16<br /> </td> <td>1-11/9-3/2<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-11-16<br /> </td> <td>1-12/7-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-14-16<br /> </td> <td>1-6/5-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-8-24<br /> </td> <td>1-11/9-11/6<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-16-24<br /> </td> <td>1-3/2-11/6<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-3-27<br /> </td> <td>1-7/5-9/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-11-27<br /> </td> <td>1-12/7-9/7<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-16-27<br /> </td> <td>1-3/2-9/7<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-24-27<br /> </td> <td>1-11/6-9/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-3-30<br /> </td> <td>1-7/5-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-14-30<br /> </td> <td>1-6/5-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-16-30<br /> </td> <td>1-3/2-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-27-30<br /> </td> <td>1-9/7-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-2-32<br /> </td> <td>1-5/4-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-5-32<br /> </td> <td>1-7/4-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-8-32<br /> </td> <td>1-11/9-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-16-32<br /> </td> <td>1-3/2-9/8<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-24-32<br /> </td> <td>1-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-27-32<br /> </td> <td>1-9/7-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-30-32<br /> </td> <td>1-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-3-35<br /> </td> <td>1-7/5-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-5-35<br /> </td> <td>1-7/4-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-8-35<br /> </td> <td>1-11/9-11/7<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-11-35<br /> </td> <td>1-12/7-11/7<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-24-35<br /> </td> <td>1-11/6-11/7<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-27-35<br /> </td> <td>1-9/7-11/7<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-30-35<br /> </td> <td>1-9/5-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-32-35<br /> </td> <td>1-9/8-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-3-38<br /> </td> <td>1-7/5-11/10<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-8-38<br /> </td> <td>1-11/9-11/10<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-11-38<br /> </td> <td>1-12/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-14-38<br /> </td> <td>1-6/5-11/10<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-24-38<br /> </td> <td>1-11/6-11/10<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-27-38<br /> </td> <td>1-9/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-30-38<br /> </td> <td>1-9/5-11/10<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-35-38<br /> </td> <td>1-11/7-11/10<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-2-40<br /> </td> <td>1-5/4-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-5-40<br /> </td> <td>1-7/4-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-8-40<br /> </td> <td>1-11/9-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-16-40<br /> </td> <td>1-3/2-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-24-40<br /> </td> <td>1-11/6-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-32-40<br /> </td> <td>1-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-35-40<br /> </td> <td>1-11/7-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-38-40<br /> </td> <td>1-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-3-5-8<br /> </td> <td>1-7/5-7/4-11/9<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-3-8-11<br /> </td> <td>1-7/5-11/9-12/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-3-11-14<br /> </td> <td>1-7/5-12/7-6/5<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-2-5-16<br /> </td> <td>1-5/4-7/4-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-5-8-16<br /> </td> <td>1-7/4-11/9-3/2<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-8-11-16<br /> </td> <td>1-11/9-12/7-3/2<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-11-14-16<br /> </td> <td>1-12/7-6/5-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-8-16-24<br /> </td> <td>1-11/9-3/2-11/6<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-3-11-27<br /> </td> <td>1-7/5-12/7-9/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-11-16-27<br /> </td> <td>1-12/7-3/2-9/7<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-16-24-27<br /> </td> <td>1-3/2-11/6-9/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-3-14-30<br /> </td> <td>1-7/5-6/5-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-14-16-30<br /> </td> <td>1-6/5-3/2-9/5<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-3-27-30<br /> </td> <td>1-7/5-9/7-9/5<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-16-27-30<br /> </td> <td>1-3/2-9/7-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-2-5-32<br /> </td> <td>1-5/4-7/4-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-5-8-32<br /> </td> <td>1-7/4-11/9-9/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-2-16-32<br /> </td> <td>1-5/4-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-5-16-32<br /> </td> <td>1-7/4-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-8-16-32<br /> </td> <td>1-11/9-3/2-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-8-24-32<br /> </td> <td>1-11/9-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-16-24-32<br /> </td> <td>1-3/2-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-16-27-32<br /> </td> <td>1-3/2-9/7-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-24-27-32<br /> </td> <td>1-11/6-9/7-9/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-16-30-32<br /> </td> <td>1-3/2-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-27-30-32<br /> </td> <td>1-9/7-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-3-5-35<br /> </td> <td>1-7/5-7/4-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-3-8-35<br /> </td> <td>1-7/5-11/9-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-5-8-35<br /> </td> <td>1-7/4-11/9-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-3-11-35<br /> </td> <td>1-7/5-12/7-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-8-11-35<br /> </td> <td>1-11/9-12/7-11/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-8-24-35<br /> </td> <td>1-11/9-11/6-11/7<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-3-27-35<br /> </td> <td>1-7/5-9/7-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-11-27-35<br /> </td> <td>1-12/7-9/7-11/7<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-24-27-35<br /> </td> <td>1-11/6-9/7-11/7<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-3-30-35<br /> </td> <td>1-7/5-9/5-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-27-30-35<br /> </td> <td>1-9/7-9/5-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-5-32-35<br /> </td> <td>1-7/4-9/8-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-8-32-35<br /> </td> <td>1-11/9-9/8-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-24-32-35<br /> </td> <td>1-11/6-9/8-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-27-32-35<br /> </td> <td>1-9/7-9/8-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-30-32-35<br /> </td> <td>1-9/5-9/8-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-3-8-38<br /> </td> <td>1-7/5-11/9-11/10<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-3-11-38<br /> </td> <td>1-7/5-12/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-8-11-38<br /> </td> <td>1-11/9-12/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-3-14-38<br /> </td> <td>1-7/5-6/5-11/10<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-11-14-38<br /> </td> <td>1-12/7-6/5-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-8-24-38<br /> </td> <td>1-11/9-11/6-11/10<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-3-27-38<br /> </td> <td>1-7/5-9/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-11-27-38<br /> </td> <td>1-12/7-9/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-24-27-38<br /> </td> <td>1-11/6-9/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-3-30-38<br /> </td> <td>1-7/5-9/5-11/10<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-14-30-38<br /> </td> <td>1-6/5-9/5-11/10<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-27-30-38<br /> </td> <td>1-9/7-9/5-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-3-35-38<br /> </td> <td>1-7/5-11/7-11/10<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-8-35-38<br /> </td> <td>1-11/9-11/7-11/10<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-11-35-38<br /> </td> <td>1-12/7-11/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-24-35-38<br /> </td> <td>1-11/6-11/7-11/10<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-27-35-38<br /> </td> <td>1-9/7-11/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>60<br /> </td> <td>0-30-35-38<br /> </td> <td>1-9/5-11/7-11/10<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>61<br /> </td> <td>0-2-5-40<br /> </td> <td>1-5/4-7/4-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>62<br /> </td> <td>0-5-8-40<br /> </td> <td>1-7/4-11/9-11/8<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>63<br /> </td> <td>0-2-16-40<br /> </td> <td>1-5/4-3/2-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>64<br /> </td> <td>0-5-16-40<br /> </td> <td>1-7/4-3/2-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>65<br /> </td> <td>0-8-16-40<br /> </td> <td>1-11/9-3/2-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>66<br /> </td> <td>0-8-24-40<br /> </td> <td>1-11/9-11/6-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>67<br /> </td> <td>0-16-24-40<br /> </td> <td>1-3/2-11/6-11/8<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>68<br /> </td> <td>0-2-32-40<br /> </td> <td>1-5/4-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>69<br /> </td> <td>0-5-32-40<br /> </td> <td>1-7/4-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>70<br /> </td> <td>0-8-32-40<br /> </td> <td>1-11/9-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>71<br /> </td> <td>0-16-32-40<br /> </td> <td>1-3/2-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>72<br /> </td> <td>0-24-32-40<br /> </td> <td>1-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>73<br /> </td> <td>0-5-35-40<br /> </td> <td>1-7/4-11/7-11/8<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>74<br /> </td> <td>0-8-35-40<br /> </td> <td>1-11/9-11/7-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>75<br /> </td> <td>0-24-35-40<br /> </td> <td>1-11/6-11/7-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>76<br /> </td> <td>0-32-35-40<br /> </td> <td>1-9/8-11/7-11/8<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>77<br /> </td> <td>0-8-38-40<br /> </td> <td>1-11/9-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>78<br /> </td> <td>0-24-38-40<br /> </td> <td>1-11/6-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>79<br /> </td> <td>0-35-38-40<br /> </td> <td>1-11/7-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-2-5-16-32<br /> </td> <td>1-5/4-7/4-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-5-8-16-32<br /> </td> <td>1-7/4-11/9-3/2-9/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-8-16-24-32<br /> </td> <td>1-11/9-3/2-11/6-9/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-16-24-27-32<br /> </td> <td>1-3/2-11/6-9/7-9/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-16-27-30-32<br /> </td> <td>1-3/2-9/7-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-3-5-8-35<br /> </td> <td>1-7/5-7/4-11/9-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-3-8-11-35<br /> </td> <td>1-7/5-11/9-12/7-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-3-11-27-35<br /> </td> <td>1-7/5-12/7-9/7-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-3-27-30-35<br /> </td> <td>1-7/5-9/7-9/5-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-5-8-32-35<br /> </td> <td>1-7/4-11/9-9/8-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-8-24-32-35<br /> </td> <td>1-11/9-11/6-9/8-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-24-27-32-35<br /> </td> <td>1-11/6-9/7-9/8-11/7<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-27-30-32-35<br /> </td> <td>1-9/7-9/5-9/8-11/7<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-3-8-11-38<br /> </td> <td>1-7/5-11/9-12/7-11/10<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-3-11-14-38<br /> </td> <td>1-7/5-12/7-6/5-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-3-11-27-38<br /> </td> <td>1-7/5-12/7-9/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-3-14-30-38<br /> </td> <td>1-7/5-6/5-9/5-11/10<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-3-27-30-38<br /> </td> <td>1-7/5-9/7-9/5-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-3-8-35-38<br /> </td> <td>1-7/5-11/9-11/7-11/10<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-3-11-35-38<br /> </td> <td>1-7/5-12/7-11/7-11/10<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-8-11-35-38<br /> </td> <td>1-11/9-12/7-11/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-8-24-35-38<br /> </td> <td>1-11/9-11/6-11/7-11/10<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-3-27-35-38<br /> </td> <td>1-7/5-9/7-11/7-11/10<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-11-27-35-38<br /> </td> <td>1-12/7-9/7-11/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-24-27-35-38<br /> </td> <td>1-11/6-9/7-11/7-11/10<br /> </td> <td>swetismic<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-3-30-35-38<br /> </td> <td>1-7/5-9/5-11/7-11/10<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-27-30-35-38<br /> </td> <td>1-9/7-9/5-11/7-11/10<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-2-5-16-40<br /> </td> <td>1-5/4-7/4-3/2-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-5-8-16-40<br /> </td> <td>1-7/4-11/9-3/2-11/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-8-16-24-40<br /> </td> <td>1-11/9-3/2-11/6-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-2-5-32-40<br /> </td> <td>1-5/4-7/4-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-5-8-32-40<br /> </td> <td>1-7/4-11/9-9/8-11/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-2-16-32-40<br /> </td> <td>1-5/4-3/2-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-5-16-32-40<br /> </td> <td>1-7/4-3/2-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-8-16-32-40<br /> </td> <td>1-11/9-3/2-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-8-24-32-40<br /> </td> <td>1-11/9-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-16-24-32-40<br /> </td> <td>1-3/2-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-5-8-35-40<br /> </td> <td>1-7/4-11/9-11/7-11/8<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-8-24-35-40<br /> </td> <td>1-11/9-11/6-11/7-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-5-32-35-40<br /> </td> <td>1-7/4-9/8-11/7-11/8<br /> </td> <td>werckismic<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-8-32-35-40<br /> </td> <td>1-11/9-9/8-11/7-11/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-24-32-35-40<br /> </td> <td>1-11/6-9/8-11/7-11/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-8-24-38-40<br /> </td> <td>1-11/9-11/6-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-8-35-38-40<br /> </td> <td>1-11/9-11/7-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-24-35-38-40<br /> </td> <td>1-11/6-11/7-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-3-8-11-35-38<br /> </td> <td>1-7/5-11/9-12/7-11/7-11/10<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-3-11-27-35-38<br /> </td> <td>1-7/5-12/7-9/7-11/7-11/10<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-3-27-30-35-38<br /> </td> <td>1-7/5-9/7-9/5-11/7-11/10<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-2-5-16-32-40<br /> </td> <td>1-5/4-7/4-3/2-9/8-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-5-8-16-32-40<br /> </td> <td>1-7/4-11/9-3/2-9/8-11/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-8-16-24-32-40<br /> </td> <td>1-11/9-3/2-11/6-9/8-11/8<br /> </td> <td>rastmic<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-5-8-32-35-40<br /> </td> <td>1-7/4-11/9-9/8-11/7-11/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-8-24-32-35-40<br /> </td> <td>1-11/9-11/6-9/8-11/7-11/8<br /> </td> <td>jove<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-8-24-35-38-40<br /> </td> <td>1-11/9-11/6-11/7-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> </table> </body></html>