Chords of hemiwur
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2012-01-01 01:25:57 UTC.
- The original revision id was 288950691.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Würschmidt family#Hemiwürschmidt|hemiwur temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 121/120 are biyatismic, by 176/175 werckismic, and by 385/384 keenanismic. Chords requiring any two of the above are labeled zeus. Hemiwur has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 32, and so would require the 37 note MOS, but there are many chords of much lower complexity, so that the 13-note MOS, for instance, has a couple of hexads, plus many more pentads, tetrads and triads. =Triads= || Number || Chord || Transversal || Type || || 1 || 0-2-4 || 1-5/4-11/7 || valinorsmic || || 2 || 0-2-5 || 1-5/4-7/4 || otonal || || 3 || 0-3-5 || 1-7/5-7/4 || utonal || || 4 || 0-2-7 || 1-5/4-11/10 || valinorsmic || || 5 || 0-3-7 || 1-7/5-11/10 || otonal || || 6 || 0-4-7 || 1-11/7-11/10 || utonal || || 7 || 0-5-7 || 1-7/4-11/10 || valinorsmic || || 8 || 0-2-9 || 1-5/4-11/8 || otonal || || 9 || 0-4-9 || 1-11/7-11/8 || utonal || || 10 || 0-5-9 || 1-7/4-11/8 || otonal || || 11 || 0-7-9 || 1-11/10-11/8 || utonal || || 12 || 0-2-11 || 1-5/4-12/7 || keenanismic || || 13 || 0-4-11 || 1-11/7-12/7 || otonal || || 14 || 0-7-11 || 1-12/11-12/7 || utonal || || 15 || 0-9-11 || 1-11/8-12/7 || keenanismic || || 16 || 0-3-14 || 1-7/5-6/5 || otonal || || 17 || 0-5-14 || 1-7/4-6/5 || keenanismic || || 18 || 0-7-14 || 1-11/10-6/5 || otonal || || 19 || 0-9-14 || 1-11/8-6/5 || keenanismic || || 20 || 0-11-14 || 1-12/7-6/5 || utonal || || 21 || 0-2-16 || 1-5/4-3/2 || otonal || || 22 || 0-5-16 || 1-7/4-3/2 || otonal || || 23 || 0-7-16 || 1-12/11-3/2 || utonal || || 24 || 0-9-16 || 1-11/8-3/2 || otonal || || 25 || 0-11-16 || 1-12/7-3/2 || utonal || || 26 || 0-14-16 || 1-6/5-3/2 || utonal || || 27 || 0-7-23 || 1-12/11-18/11 || otonal || || 28 || 0-9-23 || 1-11/8-18/11 || biyatismic || || 29 || 0-14-23 || 1-6/5-18/11 || biyatismic || || 30 || 0-16-23 || 1-3/2-18/11 || utonal || || 31 || 0-4-27 || 1-11/7-9/7 || otonal || || 32 || 0-11-27 || 1-12/7-9/7 || otonal || || 33 || 0-16-27 || 1-3/2-9/7 || utonal || || 34 || 0-23-27 || 1-18/11-9/7 || utonal || || 35 || 0-3-30 || 1-7/5-9/5 || otonal || || 36 || 0-7-30 || 1-11/10-9/5 || otonal || || 37 || 0-14-30 || 1-6/5-9/5 || otonal || || 38 || 0-16-30 || 1-3/2-9/5 || utonal || || 39 || 0-23-30 || 1-18/11-9/5 || utonal || || 40 || 0-27-30 || 1-9/7-9/5 || utonal || || 41 || 0-2-32 || 1-5/4-9/8 || otonal || || 42 || 0-5-32 || 1-7/4-9/8 || otonal || || 43 || 0-9-32 || 1-11/8-9/8 || otonal || || 44 || 0-16-32 || 1-3/2-9/8 || ambitonal || || 45 || 0-23-32 || 1-18/11-9/8 || utonal || || 46 || 0-27-32 || 1-9/7-9/8 || utonal || || 47 || 0-30-32 || 1-9/5-9/8 || utonal || =Tetrads= || Number || Chord || Transversal || Type || || 1 || 0-2-4-7 || 1-5/4-11/7-11/10 || valinorsmic || || 2 || 0-2-5-7 || 1-5/4-7/4-11/10 || valinorsmic || || 3 || 0-3-5-7 || 1-7/5-7/4-11/10 || valinorsmic || || 4 || 0-2-4-9 || 1-5/4-11/7-11/8 || valinorsmic || || 5 || 0-2-5-9 || 1-5/4-7/4-11/8 || otonal || || 6 || 0-2-7-9 || 1-5/4-11/10-11/8 || valinorsmic || || 7 || 0-4-7-9 || 1-11/7-11/10-11/8 || utonal || || 8 || 0-5-7-9 || 1-7/4-11/10-11/8 || valinorsmic || || 9 || 0-2-4-11 || 1-5/4-11/7-12/7 || zeus || || 10 || 0-2-7-11 || 1-5/4-11/10-12/7 || zeus || || 11 || 0-4-7-11 || 1-11/7-11/10-12/7 || biyatismic || || 12 || 0-2-9-11 || 1-5/4-11/8-12/7 || keenanismic || || 13 || 0-4-9-11 || 1-11/7-11/8-12/7 || zeus || || 14 || 0-7-9-11 || 1-11/10-11/8-12/7 || zeus || || 15 || 0-3-5-14 || 1-7/5-7/4-6/5 || keenanismic || || 16 || 0-3-7-14 || 1-7/5-11/10-6/5 || otonal || || 17 || 0-5-7-14 || 1-7/4-11/10-6/5 || zeus || || 18 || 0-5-9-14 || 1-7/4-11/8-6/5 || keenanismic || || 19 || 0-7-9-14 || 1-11/10-11/8-6/5 || zeus || || 20 || 0-7-11-14 || 1-12/11-12/7-6/5 || utonal || || 21 || 0-9-11-14 || 1-11/8-12/7-6/5 || keenanismic || || 22 || 0-2-5-16 || 1-5/4-7/4-3/2 || otonal || || 23 || 0-2-7-16 || 1-5/4-11/10-3/2 || zeus || || 24 || 0-5-7-16 || 1-7/4-11/10-3/2 || zeus || || 25 || 0-2-9-16 || 1-5/4-11/8-3/2 || otonal || || 26 || 0-5-9-16 || 1-7/4-11/8-3/2 || otonal || || 27 || 0-7-9-16 || 1-11/10-11/8-3/2 || biyatismic || || 28 || 0-2-11-16 || 1-5/4-12/7-3/2 || keenanismic || || 29 || 0-7-11-16 || 1-12/11-12/7-3/2 || utonal || || 30 || 0-9-11-16 || 1-11/8-12/7-3/2 || zeus || || 31 || 0-5-14-16 || 1-7/4-6/5-3/2 || keenanismic || || 32 || 0-7-14-16 || 1-12/11-6/5-3/2 || utonal || || 33 || 0-9-14-16 || 1-11/8-6/5-3/2 || zeus || || 34 || 0-11-14-16 || 1-12/7-6/5-3/2 || utonal || || 35 || 0-7-9-23 || 1-11/10-11/8-18/11 || biyatismic || || 36 || 0-7-14-23 || 1-11/10-6/5-18/11 || biyatismic || || 37 || 0-9-14-23 || 1-11/8-6/5-18/11 || zeus || || 38 || 0-7-16-23 || 1-12/11-3/2-18/11 || ambitonal || || 39 || 0-9-16-23 || 1-11/8-3/2-18/11 || biyatismic || || 40 || 0-14-16-23 || 1-6/5-3/2-18/11 || biyatismic || || 41 || 0-4-11-27 || 1-11/7-12/7-9/7 || otonal || || 42 || 0-11-16-27 || 1-12/7-3/2-9/7 || ambitonal || || 43 || 0-16-23-27 || 1-3/2-18/11-9/7 || utonal || || 44 || 0-3-7-30 || 1-7/5-11/10-9/5 || otonal || || 45 || 0-3-14-30 || 1-7/5-6/5-9/5 || otonal || || 46 || 0-7-14-30 || 1-11/10-6/5-9/5 || otonal || || 47 || 0-7-16-30 || 1-11/10-3/2-9/5 || biyatismic || || 48 || 0-14-16-30 || 1-6/5-3/2-9/5 || ambitonal || || 49 || 0-7-23-30 || 1-11/10-18/11-9/5 || biyatismic || || 50 || 0-14-23-30 || 1-6/5-18/11-9/5 || biyatismic || || 51 || 0-16-23-30 || 1-3/2-18/11-9/5 || utonal || || 52 || 0-16-27-30 || 1-3/2-9/7-9/5 || utonal || || 53 || 0-23-27-30 || 1-18/11-9/7-9/5 || utonal || || 54 || 0-2-5-32 || 1-5/4-7/4-9/8 || otonal || || 55 || 0-2-9-32 || 1-5/4-11/8-9/8 || otonal || || 56 || 0-5-9-32 || 1-7/4-11/8-9/8 || otonal || || 57 || 0-2-16-32 || 1-5/4-3/2-9/8 || otonal || || 58 || 0-5-16-32 || 1-7/4-3/2-9/8 || otonal || || 59 || 0-9-16-32 || 1-11/8-3/2-9/8 || otonal || || 60 || 0-9-23-32 || 1-11/8-18/11-9/8 || biyatismic || || 61 || 0-16-23-32 || 1-3/2-18/11-9/8 || utonal || || 62 || 0-16-27-32 || 1-3/2-9/7-9/8 || utonal || || 63 || 0-23-27-32 || 1-18/11-9/7-9/8 || utonal || || 64 || 0-16-30-32 || 1-3/2-9/5-9/8 || utonal || || 65 || 0-23-30-32 || 1-18/11-9/5-9/8 || utonal || || 66 || 0-27-30-32 || 1-9/7-9/5-9/8 || utonal || =Pentads= || Number || Chord || Transversal || Type || || 1 || 0-2-4-7-9 || 1-5/4-11/7-11/10-11/8 || valinorsmic || || 2 || 0-2-5-7-9 || 1-5/4-7/4-11/10-11/8 || valinorsmic || || 3 || 0-2-4-7-11 || 1-5/4-11/7-11/10-12/7 || zeus || || 4 || 0-2-4-9-11 || 1-5/4-11/7-11/8-12/7 || zeus || || 5 || 0-2-7-9-11 || 1-5/4-11/10-11/8-12/7 || zeus || || 6 || 0-4-7-9-11 || 1-11/7-11/10-11/8-12/7 || zeus || || 7 || 0-3-5-7-14 || 1-7/5-7/4-11/10-6/5 || zeus || || 8 || 0-5-7-9-14 || 1-7/4-11/10-11/8-6/5 || zeus || || 9 || 0-7-9-11-14 || 1-11/10-11/8-12/7-6/5 || zeus || || 10 || 0-2-5-7-16 || 1-5/4-7/4-11/10-3/2 || zeus || || 11 || 0-2-5-9-16 || 1-5/4-7/4-11/8-3/2 || otonal || || 12 || 0-2-7-9-16 || 1-5/4-11/10-11/8-3/2 || zeus || || 13 || 0-5-7-9-16 || 1-7/4-11/10-11/8-3/2 || zeus || || 14 || 0-2-7-11-16 || 1-5/4-11/10-12/7-3/2 || zeus || || 15 || 0-2-9-11-16 || 1-5/4-11/8-12/7-3/2 || zeus || || 16 || 0-7-9-11-16 || 1-11/10-11/8-12/7-3/2 || zeus || || 17 || 0-5-7-14-16 || 1-7/4-11/10-6/5-3/2 || zeus || || 18 || 0-5-9-14-16 || 1-7/4-11/8-6/5-3/2 || zeus || || 19 || 0-7-9-14-16 || 1-11/10-11/8-6/5-3/2 || zeus || || 20 || 0-7-11-14-16 || 1-12/11-12/7-6/5-3/2 || utonal || || 21 || 0-9-11-14-16 || 1-11/8-12/7-6/5-3/2 || zeus || || 22 || 0-7-9-14-23 || 1-11/10-11/8-6/5-18/11 || zeus || || 23 || 0-7-9-16-23 || 1-11/10-11/8-3/2-18/11 || biyatismic || || 24 || 0-7-14-16-23 || 1-11/10-6/5-3/2-18/11 || biyatismic || || 25 || 0-9-14-16-23 || 1-11/8-6/5-3/2-18/11 || zeus || || 26 || 0-3-7-14-30 || 1-7/5-11/10-6/5-9/5 || otonal || || 27 || 0-7-14-16-30 || 1-11/10-6/5-3/2-9/5 || biyatismic || || 28 || 0-7-14-23-30 || 1-11/10-6/5-18/11-9/5 || biyatismic || || 29 || 0-7-16-23-30 || 1-11/10-3/2-18/11-9/5 || biyatismic || || 30 || 0-14-16-23-30 || 1-6/5-3/2-18/11-9/5 || biyatismic || || 31 || 0-16-23-27-30 || 1-3/2-18/11-9/7-9/5 || utonal || || 32 || 0-2-5-9-32 || 1-5/4-7/4-11/8-9/8 || otonal || || 33 || 0-2-5-16-32 || 1-5/4-7/4-3/2-9/8 || otonal || || 34 || 0-2-9-16-32 || 1-5/4-11/8-3/2-9/8 || otonal || || 35 || 0-5-9-16-32 || 1-7/4-11/8-3/2-9/8 || otonal || || 36 || 0-9-16-23-32 || 1-11/8-3/2-18/11-9/8 || biyatismic || || 37 || 0-16-23-27-32 || 1-3/2-18/11-9/7-9/8 || utonal || || 38 || 0-16-23-30-32 || 1-3/2-18/11-9/5-9/8 || utonal || || 39 || 0-16-27-30-32 || 1-3/2-9/7-9/5-9/8 || utonal || || 40 || 0-23-27-30-32 || 1-18/11-9/7-9/5-9/8 || utonal || =Hexads= || Number || Chord || Transversal || Type || || 1 || 0-2-4-7-9-11 || 1-5/4-11/7-11/10-11/8-12/7 || zeus || || 2 || 0-2-5-7-9-16 || 1-5/4-7/4-11/10-11/8-3/2 || zeus || || 3 || 0-2-7-9-11-16 || 1-5/4-11/10-11/8-12/7-3/2 || zeus || || 4 || 0-5-7-9-14-16 || 1-7/4-11/10-11/8-6/5-3/2 || zeus || || 5 || 0-7-9-11-14-16 || 1-11/10-11/8-12/7-6/5-3/2 || zeus || || 6 || 0-7-9-14-16-23 || 1-11/10-11/8-6/5-3/2-18/11 || zeus || || 7 || 0-7-14-16-23-30 || 1-11/10-6/5-3/2-18/11-9/5 || biyatismic || || 8 || 0-2-5-9-16-32 || 1-5/4-7/4-11/8-3/2-9/8 || otonal || || 9 || 0-16-23-27-30-32 || 1-3/2-18/11-9/7-9/5-9/8 || utonal ||
Original HTML content:
<html><head><title>Chords of hemiwur</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/W%C3%BCrschmidt%20family#Hemiwürschmidt">hemiwur temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 121/120 are biyatismic, by 176/175 werckismic, and by 385/384 keenanismic. Chords requiring any two of the above are labeled zeus.<br /> <br /> Hemiwur has MOS of size 6, 7, 13, 19, 25, 31, 37 and 68. The largest chords on these lists have complexity 32, and so would require the 37 note MOS, but there are many chords of much lower complexity, so that the 13-note MOS, for instance, has a couple of hexads, plus many more pentads, tetrads and triads.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-2-4<br /> </td> <td>1-5/4-11/7<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-2-5<br /> </td> <td>1-5/4-7/4<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-3-5<br /> </td> <td>1-7/5-7/4<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-2-7<br /> </td> <td>1-5/4-11/10<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-3-7<br /> </td> <td>1-7/5-11/10<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-4-7<br /> </td> <td>1-11/7-11/10<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-5-7<br /> </td> <td>1-7/4-11/10<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-2-9<br /> </td> <td>1-5/4-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-4-9<br /> </td> <td>1-11/7-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-5-9<br /> </td> <td>1-7/4-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-7-9<br /> </td> <td>1-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-2-11<br /> </td> <td>1-5/4-12/7<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-4-11<br /> </td> <td>1-11/7-12/7<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-7-11<br /> </td> <td>1-12/11-12/7<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-9-11<br /> </td> <td>1-11/8-12/7<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-3-14<br /> </td> <td>1-7/5-6/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-5-14<br /> </td> <td>1-7/4-6/5<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-7-14<br /> </td> <td>1-11/10-6/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-9-14<br /> </td> <td>1-11/8-6/5<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-11-14<br /> </td> <td>1-12/7-6/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-2-16<br /> </td> <td>1-5/4-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-5-16<br /> </td> <td>1-7/4-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-7-16<br /> </td> <td>1-12/11-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-9-16<br /> </td> <td>1-11/8-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-11-16<br /> </td> <td>1-12/7-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-14-16<br /> </td> <td>1-6/5-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-7-23<br /> </td> <td>1-12/11-18/11<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-9-23<br /> </td> <td>1-11/8-18/11<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-14-23<br /> </td> <td>1-6/5-18/11<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-16-23<br /> </td> <td>1-3/2-18/11<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-4-27<br /> </td> <td>1-11/7-9/7<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-11-27<br /> </td> <td>1-12/7-9/7<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-16-27<br /> </td> <td>1-3/2-9/7<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-23-27<br /> </td> <td>1-18/11-9/7<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-3-30<br /> </td> <td>1-7/5-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-7-30<br /> </td> <td>1-11/10-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-14-30<br /> </td> <td>1-6/5-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-16-30<br /> </td> <td>1-3/2-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-23-30<br /> </td> <td>1-18/11-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-27-30<br /> </td> <td>1-9/7-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-2-32<br /> </td> <td>1-5/4-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-5-32<br /> </td> <td>1-7/4-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-9-32<br /> </td> <td>1-11/8-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-16-32<br /> </td> <td>1-3/2-9/8<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-23-32<br /> </td> <td>1-18/11-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-27-32<br /> </td> <td>1-9/7-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-30-32<br /> </td> <td>1-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-2-4-7<br /> </td> <td>1-5/4-11/7-11/10<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-2-5-7<br /> </td> <td>1-5/4-7/4-11/10<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-3-5-7<br /> </td> <td>1-7/5-7/4-11/10<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-2-4-9<br /> </td> <td>1-5/4-11/7-11/8<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-2-5-9<br /> </td> <td>1-5/4-7/4-11/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-2-7-9<br /> </td> <td>1-5/4-11/10-11/8<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-4-7-9<br /> </td> <td>1-11/7-11/10-11/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-5-7-9<br /> </td> <td>1-7/4-11/10-11/8<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-2-4-11<br /> </td> <td>1-5/4-11/7-12/7<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-2-7-11<br /> </td> <td>1-5/4-11/10-12/7<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-4-7-11<br /> </td> <td>1-11/7-11/10-12/7<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-2-9-11<br /> </td> <td>1-5/4-11/8-12/7<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-4-9-11<br /> </td> <td>1-11/7-11/8-12/7<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-7-9-11<br /> </td> <td>1-11/10-11/8-12/7<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-3-5-14<br /> </td> <td>1-7/5-7/4-6/5<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-3-7-14<br /> </td> <td>1-7/5-11/10-6/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-5-7-14<br /> </td> <td>1-7/4-11/10-6/5<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-5-9-14<br /> </td> <td>1-7/4-11/8-6/5<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-7-9-14<br /> </td> <td>1-11/10-11/8-6/5<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-7-11-14<br /> </td> <td>1-12/11-12/7-6/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-9-11-14<br /> </td> <td>1-11/8-12/7-6/5<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-2-5-16<br /> </td> <td>1-5/4-7/4-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-2-7-16<br /> </td> <td>1-5/4-11/10-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-5-7-16<br /> </td> <td>1-7/4-11/10-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-2-9-16<br /> </td> <td>1-5/4-11/8-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-5-9-16<br /> </td> <td>1-7/4-11/8-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-7-9-16<br /> </td> <td>1-11/10-11/8-3/2<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-2-11-16<br /> </td> <td>1-5/4-12/7-3/2<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-7-11-16<br /> </td> <td>1-12/11-12/7-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-9-11-16<br /> </td> <td>1-11/8-12/7-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-5-14-16<br /> </td> <td>1-7/4-6/5-3/2<br /> </td> <td>keenanismic<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-7-14-16<br /> </td> <td>1-12/11-6/5-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-9-14-16<br /> </td> <td>1-11/8-6/5-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-11-14-16<br /> </td> <td>1-12/7-6/5-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-7-9-23<br /> </td> <td>1-11/10-11/8-18/11<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-7-14-23<br /> </td> <td>1-11/10-6/5-18/11<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-9-14-23<br /> </td> <td>1-11/8-6/5-18/11<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-7-16-23<br /> </td> <td>1-12/11-3/2-18/11<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-9-16-23<br /> </td> <td>1-11/8-3/2-18/11<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-14-16-23<br /> </td> <td>1-6/5-3/2-18/11<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>41<br /> </td> <td>0-4-11-27<br /> </td> <td>1-11/7-12/7-9/7<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>42<br /> </td> <td>0-11-16-27<br /> </td> <td>1-12/7-3/2-9/7<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>43<br /> </td> <td>0-16-23-27<br /> </td> <td>1-3/2-18/11-9/7<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>44<br /> </td> <td>0-3-7-30<br /> </td> <td>1-7/5-11/10-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>45<br /> </td> <td>0-3-14-30<br /> </td> <td>1-7/5-6/5-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>46<br /> </td> <td>0-7-14-30<br /> </td> <td>1-11/10-6/5-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>47<br /> </td> <td>0-7-16-30<br /> </td> <td>1-11/10-3/2-9/5<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>48<br /> </td> <td>0-14-16-30<br /> </td> <td>1-6/5-3/2-9/5<br /> </td> <td>ambitonal<br /> </td> </tr> <tr> <td>49<br /> </td> <td>0-7-23-30<br /> </td> <td>1-11/10-18/11-9/5<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>50<br /> </td> <td>0-14-23-30<br /> </td> <td>1-6/5-18/11-9/5<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>51<br /> </td> <td>0-16-23-30<br /> </td> <td>1-3/2-18/11-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>52<br /> </td> <td>0-16-27-30<br /> </td> <td>1-3/2-9/7-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>53<br /> </td> <td>0-23-27-30<br /> </td> <td>1-18/11-9/7-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>54<br /> </td> <td>0-2-5-32<br /> </td> <td>1-5/4-7/4-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>55<br /> </td> <td>0-2-9-32<br /> </td> <td>1-5/4-11/8-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>56<br /> </td> <td>0-5-9-32<br /> </td> <td>1-7/4-11/8-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>57<br /> </td> <td>0-2-16-32<br /> </td> <td>1-5/4-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>58<br /> </td> <td>0-5-16-32<br /> </td> <td>1-7/4-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>59<br /> </td> <td>0-9-16-32<br /> </td> <td>1-11/8-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>60<br /> </td> <td>0-9-23-32<br /> </td> <td>1-11/8-18/11-9/8<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>61<br /> </td> <td>0-16-23-32<br /> </td> <td>1-3/2-18/11-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>62<br /> </td> <td>0-16-27-32<br /> </td> <td>1-3/2-9/7-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>63<br /> </td> <td>0-23-27-32<br /> </td> <td>1-18/11-9/7-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>64<br /> </td> <td>0-16-30-32<br /> </td> <td>1-3/2-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>65<br /> </td> <td>0-23-30-32<br /> </td> <td>1-18/11-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>66<br /> </td> <td>0-27-30-32<br /> </td> <td>1-9/7-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-2-4-7-9<br /> </td> <td>1-5/4-11/7-11/10-11/8<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-2-5-7-9<br /> </td> <td>1-5/4-7/4-11/10-11/8<br /> </td> <td>valinorsmic<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-2-4-7-11<br /> </td> <td>1-5/4-11/7-11/10-12/7<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-2-4-9-11<br /> </td> <td>1-5/4-11/7-11/8-12/7<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-2-7-9-11<br /> </td> <td>1-5/4-11/10-11/8-12/7<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-4-7-9-11<br /> </td> <td>1-11/7-11/10-11/8-12/7<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-3-5-7-14<br /> </td> <td>1-7/5-7/4-11/10-6/5<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-5-7-9-14<br /> </td> <td>1-7/4-11/10-11/8-6/5<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-7-9-11-14<br /> </td> <td>1-11/10-11/8-12/7-6/5<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>10<br /> </td> <td>0-2-5-7-16<br /> </td> <td>1-5/4-7/4-11/10-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>11<br /> </td> <td>0-2-5-9-16<br /> </td> <td>1-5/4-7/4-11/8-3/2<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>12<br /> </td> <td>0-2-7-9-16<br /> </td> <td>1-5/4-11/10-11/8-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>13<br /> </td> <td>0-5-7-9-16<br /> </td> <td>1-7/4-11/10-11/8-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>14<br /> </td> <td>0-2-7-11-16<br /> </td> <td>1-5/4-11/10-12/7-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>15<br /> </td> <td>0-2-9-11-16<br /> </td> <td>1-5/4-11/8-12/7-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>16<br /> </td> <td>0-7-9-11-16<br /> </td> <td>1-11/10-11/8-12/7-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>17<br /> </td> <td>0-5-7-14-16<br /> </td> <td>1-7/4-11/10-6/5-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>18<br /> </td> <td>0-5-9-14-16<br /> </td> <td>1-7/4-11/8-6/5-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>19<br /> </td> <td>0-7-9-14-16<br /> </td> <td>1-11/10-11/8-6/5-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>20<br /> </td> <td>0-7-11-14-16<br /> </td> <td>1-12/11-12/7-6/5-3/2<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>21<br /> </td> <td>0-9-11-14-16<br /> </td> <td>1-11/8-12/7-6/5-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>22<br /> </td> <td>0-7-9-14-23<br /> </td> <td>1-11/10-11/8-6/5-18/11<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>23<br /> </td> <td>0-7-9-16-23<br /> </td> <td>1-11/10-11/8-3/2-18/11<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>24<br /> </td> <td>0-7-14-16-23<br /> </td> <td>1-11/10-6/5-3/2-18/11<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>25<br /> </td> <td>0-9-14-16-23<br /> </td> <td>1-11/8-6/5-3/2-18/11<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>26<br /> </td> <td>0-3-7-14-30<br /> </td> <td>1-7/5-11/10-6/5-9/5<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>27<br /> </td> <td>0-7-14-16-30<br /> </td> <td>1-11/10-6/5-3/2-9/5<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>28<br /> </td> <td>0-7-14-23-30<br /> </td> <td>1-11/10-6/5-18/11-9/5<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>29<br /> </td> <td>0-7-16-23-30<br /> </td> <td>1-11/10-3/2-18/11-9/5<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>30<br /> </td> <td>0-14-16-23-30<br /> </td> <td>1-6/5-3/2-18/11-9/5<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>31<br /> </td> <td>0-16-23-27-30<br /> </td> <td>1-3/2-18/11-9/7-9/5<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>32<br /> </td> <td>0-2-5-9-32<br /> </td> <td>1-5/4-7/4-11/8-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>33<br /> </td> <td>0-2-5-16-32<br /> </td> <td>1-5/4-7/4-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>34<br /> </td> <td>0-2-9-16-32<br /> </td> <td>1-5/4-11/8-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>35<br /> </td> <td>0-5-9-16-32<br /> </td> <td>1-7/4-11/8-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>36<br /> </td> <td>0-9-16-23-32<br /> </td> <td>1-11/8-3/2-18/11-9/8<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>37<br /> </td> <td>0-16-23-27-32<br /> </td> <td>1-3/2-18/11-9/7-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>38<br /> </td> <td>0-16-23-30-32<br /> </td> <td>1-3/2-18/11-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>39<br /> </td> <td>0-16-27-30-32<br /> </td> <td>1-3/2-9/7-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> <tr> <td>40<br /> </td> <td>0-23-27-30-32<br /> </td> <td>1-18/11-9/7-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1> <table class="wiki_table"> <tr> <td>Number<br /> </td> <td>Chord<br /> </td> <td>Transversal<br /> </td> <td>Type<br /> </td> </tr> <tr> <td>1<br /> </td> <td>0-2-4-7-9-11<br /> </td> <td>1-5/4-11/7-11/10-11/8-12/7<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>2<br /> </td> <td>0-2-5-7-9-16<br /> </td> <td>1-5/4-7/4-11/10-11/8-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>3<br /> </td> <td>0-2-7-9-11-16<br /> </td> <td>1-5/4-11/10-11/8-12/7-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>4<br /> </td> <td>0-5-7-9-14-16<br /> </td> <td>1-7/4-11/10-11/8-6/5-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>5<br /> </td> <td>0-7-9-11-14-16<br /> </td> <td>1-11/10-11/8-12/7-6/5-3/2<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>6<br /> </td> <td>0-7-9-14-16-23<br /> </td> <td>1-11/10-11/8-6/5-3/2-18/11<br /> </td> <td>zeus<br /> </td> </tr> <tr> <td>7<br /> </td> <td>0-7-14-16-23-30<br /> </td> <td>1-11/10-6/5-3/2-18/11-9/5<br /> </td> <td>biyatismic<br /> </td> </tr> <tr> <td>8<br /> </td> <td>0-2-5-9-16-32<br /> </td> <td>1-5/4-7/4-11/8-3/2-9/8<br /> </td> <td>otonal<br /> </td> </tr> <tr> <td>9<br /> </td> <td>0-16-23-27-30-32<br /> </td> <td>1-3/2-18/11-9/7-9/5-9/8<br /> </td> <td>utonal<br /> </td> </tr> </table> </body></html>