Breedsmic temperaments
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2010-07-04 02:34:40 UTC.
- The original revision id was 151482149.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Breedsmic temperaments are rank two temperaments tempering out the breedsma, 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma. It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system. ===Tertiaseptal=== Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152. It can be described as the 140&171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well. ===Neptune=== Neptune adds 48828125/48771072 = |-12 -5 11 -2> to the list of commas, and may be described as the 68&171 temperament. It has 10/7 or 7/5 as a generator. The generator chain goes merrily on, stacking one 10/7 over another. until after eighteen generator steps 6/5 (up nine octaves) is reached. Then in succession we get 12/7, the neutral third, 7/4 and 5/4. Two neutral thirds then gives a fifth, and these intervals with their inverses are the full set of septimal consonances. [[171edo]] makes a good tuning, and we can also choose to make any of the consonances besides 7/5 and 10/7 just. Adding 385/384 or 1375/1372 to the list of commas allows for an extension to the 11-limit, where (7/5)^3 equates to 11/4. This may be described as <<40 22 21 -3 ...|| or 68&103, and 171 can still be used as a tuning, with val <171 271 397 480 591|. An article on Neptune as an analog of miracle can be found [[http://tech.groups.yahoo.com/group/tuning-math/message/6001|here]]. ===Harry=== Harry adds cataharry, 19683/19600, to the set of commas. It may be described as the 58&72 temperament, with wedgie <<12 34 20 26 -2 -49||. The period is half an octave, and the generator 21/20, with generator tunings of 9/130 or 14/202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices. Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is <<12 34 20 30 ...||. Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with <<12 34 20 30 52 ...|| as the octave wedgie. [[130edo]] is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.
Original HTML content:
<html><head><title>Breedsmic temperaments</title></head><body>Breedsmic temperaments are rank two temperaments tempering out the breedsma, 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma.<br /> <br /> It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h3> --><h3 id="toc0"><a name="x--Tertiaseptal"></a><!-- ws:end:WikiTextHeadingRule:0 -->Tertiaseptal</h3> Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152. It can be described as the 140&171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. <a class="wiki_link" href="/171edo">171edo</a> makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h3> --><h3 id="toc1"><a name="x--Neptune"></a><!-- ws:end:WikiTextHeadingRule:2 -->Neptune</h3> Neptune adds 48828125/48771072 = |-12 -5 11 -2> to the list of commas, and may be described as the 68&171 temperament. It has 10/7 or 7/5 as a generator. The generator chain goes merrily on, stacking one 10/7 over another. until after eighteen generator steps 6/5 (up nine octaves) is reached. Then in succession we get 12/7, the neutral third, 7/4 and 5/4. Two neutral thirds then gives a fifth, and these intervals with their inverses are the full set of septimal consonances. <a class="wiki_link" href="/171edo">171edo</a> makes a good tuning, and we can also choose to make any of the consonances besides 7/5 and 10/7 just.<br /> <br /> Adding 385/384 or 1375/1372 to the list of commas allows for an extension to the 11-limit, where (7/5)^3 equates to 11/4. This may be described as <<40 22 21 -3 ...|| or 68&103, and 171 can still be used as a tuning, with val <171 271 397 480 591|.<br /> <br /> An article on Neptune as an analog of miracle can be found <a class="wiki_link_ext" href="http://tech.groups.yahoo.com/group/tuning-math/message/6001" rel="nofollow">here</a>.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h3> --><h3 id="toc2"><a name="x--Harry"></a><!-- ws:end:WikiTextHeadingRule:4 -->Harry</h3> Harry adds cataharry, 19683/19600, to the set of commas. It may be described as the 58&72 temperament, with wedgie <<12 34 20 26 -2 -49||. The period is half an octave, and the generator 21/20, with generator tunings of 9/130 or 14/202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices.<br /> <br /> Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is <<12 34 20 30 ...||.<br /> <br /> Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with <<12 34 20 30 52 ...|| as the octave wedgie. <a class="wiki_link" href="/130edo">130edo</a> is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.</body></html>