6L 2s
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author JosephRuhf and made on 2015-02-11 14:26:49 UTC.
- The original revision id was 540643766.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
There is only one significant (though small) harmonic entropy minimum with this MOS pattern: [[Porcupine family#Hedgehog|hedgehog]], in which two generators are 6/5 and three are 4/3, same as porcupine. In addition to the true MOS, LLLsLLLs, there is also a near-MOS, LLLLsLLs, in which the period is the only interval with more than two flavors. The true MOS is always proper, because there is only one small step per period, but the near-MOS is only proper if the generator is smaller than 2\14 (which includes hedgehog). ||||||~ Generator ||~ ||~ ||~ ||~ Cents ||~ Comments || || 1\8 || || || || || || 150 ||= || || || || 3\22 || || || || 163.64 ||= Hedgehog is around here || || || || || || 8\58 || || 165.52 ||= || || || || || || || 13\94 || 165.96 ||= Golden hedgehog/echidna || || || || || 5\36 || || || 166.67 ||= || || || 2\14 || || || || || 171.43 ||= Boundary of propriety for near-MOS Optimum rank range (L/s=2/1) for MOS || || || || || || || || 179.833 ||= <span style="display: block; text-align: center;">L/s = 3/2^(1/75)</span> || || || || 3\20 || || || || 180 ||= L/s = 3 || || || || || || || || 180.166 || <span style="display: block; text-align: center;">L/s = 3*2^(1/75)</span> || || || || || 4/26 || || || 184.615 ||= L/s = 4 || || 1\6 || || || || || || 200 ||= ||
Original HTML content:
<html><head><title>6L 2s</title></head><body>There is only one significant (though small) harmonic entropy minimum with this MOS pattern: <a class="wiki_link" href="/Porcupine%20family#Hedgehog">hedgehog</a>, in which two generators are 6/5 and three are 4/3, same as porcupine.<br /> <br /> In addition to the true MOS, LLLsLLLs, there is also a near-MOS, LLLLsLLs, in which the period is the only interval with more than two flavors. The true MOS is always proper, because there is only one small step per period, but the near-MOS is only proper if the generator is smaller than 2\14 (which includes hedgehog).<br /> <table class="wiki_table"> <tr> <th colspan="3">Generator<br /> </th> <th><br /> </th> <th><br /> </th> <th><br /> </th> <th>Cents<br /> </th> <th>Comments<br /> </th> </tr> <tr> <td>1\8<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>150<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>3\22<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>163.64<br /> </td> <td style="text-align: center;">Hedgehog is around here<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>8\58<br /> </td> <td><br /> </td> <td>165.52<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>13\94<br /> </td> <td>165.96<br /> </td> <td style="text-align: center;">Golden hedgehog/echidna<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>5\36<br /> </td> <td><br /> </td> <td><br /> </td> <td>166.67<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td><br /> </td> <td>2\14<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>171.43<br /> </td> <td style="text-align: center;">Boundary of propriety for near-MOS<br /> Optimum rank range (L/s=2/1) for MOS<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>179.833<br /> </td> <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = 3/2^(1/75)</span><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td>3\20<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>180<br /> </td> <td style="text-align: center;">L/s = 3<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>180.166<br /> </td> <td><span style="display: block; text-align: center;">L/s = 3*2^(1/75)</span><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>4/26<br /> </td> <td><br /> </td> <td><br /> </td> <td>184.615<br /> </td> <td style="text-align: center;">L/s = 4<br /> </td> </tr> <tr> <td>1\6<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td>200<br /> </td> <td style="text-align: center;"><br /> </td> </tr> </table> </body></html>