27edt

Revision as of 13:58, 23 February 2011 by Wikispaces>guest (**Imported revision 204399320 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author guest and made on 2011-02-23 13:58:56 UTC.
The original revision id was 204399320.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=[[#Division of the tritave (3/1) into 12 equal parts]]Division of the tritave (3/1) into 27 equal parts= 

Dividing the interval of 3/1 into 27 equal parts gives a scale with a basic step of 70.44 cents, which is nearly identical to one step of [[17edo]] (70.59 cents). Hence it has similar melodic and harmonic properties as 17edo, with the difference that 27 is not a prime number.

27 being the third power of 3, and the base interval being 3/1, 27edt is a tuning where the number 3 prevails. This property seems to predestine 27edt as base tuning for Klingon music (since the tradtional Klingon number system is also based on 3). See, e.g., [[http://launch.dir.groups.yahoo.com/group/tuning/message/86909]] and [[http://www.klingon.org/smboard/index.php?topic=1810.0]].

==Intervals== 
|| degrees of 27edt || cents value ||
|| 0 || 0.00 ||
|| 1 || 70.44 ||
|| 2 || 140.89 ||
|| 3 || 211.33 ||
|| 4 || 281.77 ||
|| 5 || 352.21 ||
|| 6 || 422.66 ||
|| 7 || 493.10 ||
|| 8 || 563.54 ||
|| 9 || 633.99 ||
|| 10 || 704.43 ||
|| 11 || 774.87 ||
|| 12 || 845.31 ||
|| 13 || 915.76 ||
|| 14 || 986.20 ||
|| 15 || 1056.64 ||
|| 16 || 1127.08 ||
|| 17 || 1197.53 ||
|| 18 || 1267.97 ||
|| 19 || 1338.41 ||
|| 20 || 1408.86 ||
|| 21 || 1479.30 ||
|| 22 || 1549.74 ||
|| 23 || 1620.18 ||
|| 24 || 1690.63 ||
|| 25 || 1761.07 ||
|| 26 || 1831.51 ||
|| 27 || 1901.96 ||

Original HTML content:

<html><head><title>27edt</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Division of the tritave (3/1) into 27 equal parts"></a><!-- ws:end:WikiTextHeadingRule:0 --><!-- ws:start:WikiTextAnchorRule:4:&lt;img src=&quot;/i/anchor.gif&quot; class=&quot;WikiAnchor&quot; alt=&quot;Anchor&quot; id=&quot;wikitext@@anchor@@Division of the tritave (3/1) into 12 equal parts&quot; title=&quot;Anchor: Division of the tritave (3/1) into 12 equal parts&quot;/&gt; --><a name="Division of the tritave (3/1) into 12 equal parts"></a><!-- ws:end:WikiTextAnchorRule:4 -->Division of the tritave (3/1) into 27 equal parts</h1>
 <br />
Dividing the interval of 3/1 into 27 equal parts gives a scale with a basic step of 70.44 cents, which is nearly identical to one step of <a class="wiki_link" href="/17edo">17edo</a> (70.59 cents). Hence it has similar melodic and harmonic properties as 17edo, with the difference that 27 is not a prime number.<br />
<br />
27 being the third power of 3, and the base interval being 3/1, 27edt is a tuning where the number 3 prevails. This property seems to predestine 27edt as base tuning for Klingon music (since the tradtional Klingon number system is also based on 3). See, e.g., <a class="wiki_link_ext" href="http://launch.dir.groups.yahoo.com/group/tuning/message/86909" rel="nofollow">http://launch.dir.groups.yahoo.com/group/tuning/message/86909</a> and <a class="wiki_link_ext" href="http://www.klingon.org/smboard/index.php?topic=1810.0" rel="nofollow">http://www.klingon.org/smboard/index.php?topic=1810.0</a>.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Division of the tritave (3/1) into 27 equal parts-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <td>degrees of 27edt<br />
</td>
        <td>cents value<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0.00<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>70.44<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>140.89<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>211.33<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>281.77<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>352.21<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>422.66<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>493.10<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>563.54<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>633.99<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>704.43<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>774.87<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>845.31<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>915.76<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>986.20<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>1056.64<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>1127.08<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>1197.53<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>1267.97<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>1338.41<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>1408.86<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>1479.30<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>1549.74<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>1620.18<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>1690.63<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>1761.07<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>1831.51<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>1901.96<br />
</td>
    </tr>
</table>

</body></html>