253edo

Revision as of 15:22, 1 November 2010 by Wikispaces>Osmiorisbendi (**Imported revision 175432587 - Original comment: **)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2010-11-01 15:22:21 UTC.
The original revision id was 175432587.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=253 tone equal temperament= 

253edo divides the octave in steps of 4,743083 Cents. 253edo contains an aproximation of the Perfect Fifth of **701,976285 Cents (step 148\253)**. It is practically PERFECT.

**253 tone equal modes**

43 43 19 43 43 43 19: MOS of 5L 2s (Superpytagorean Tuning)
33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue Tuning)

Original HTML content:

<html><head><title>253edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x253 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 -->253 tone equal temperament</h1>
 <br />
253edo divides the octave in steps of 4,743083 Cents. 253edo contains an aproximation of the Perfect Fifth of <strong>701,976285 Cents (step 148\253)</strong>. It is practically PERFECT.<br />
<br />
<strong>253 tone equal modes</strong><br />
<br />
43 43 19 43 43 43 19: MOS of 5L 2s (Superpytagorean Tuning)<br />
33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue Tuning)</body></html>